Đề bài

Không giải các phương trình, hãy xác định số nghiệm của mỗi phương trình sau:

a) \(6{x^2} - 2x + 9 = 0\)

b) \(3{x^2} - 2\sqrt {15} x + 5 = 0\)

c) \(\frac{1}{3}{y^2} - 5y + \frac{3}{2} = 0\)

d) \(2,3{t^2} + 1,15t - 6,4 = 0\)

Phương pháp giải

Dựa vào phương trình \(a{x^2} + bx + c = 0(a \ne 0)\)  có ac < 0 (a và c trái dấu) thì phương trình có hai nghiệm phân biệt.

Lời giải của GV Loigiaihay.com

a) \(6{x^2} - 2x + 9 = 0\)

Phương trình có ac = 6.9 = 54 > 0

Phương trình vô nghiệm.

b) \(3{x^2} - 2\sqrt {15} x + 5 = 0\)

Phương trình có ac = 3.5 = 15 > 0

Phương trình vô nghiệm.

c) \(\frac{1}{3}{y^2} - 5y + \frac{3}{2} = 0\)

Phương trình có ac = \(\frac{1}{3}.\frac{3}{2} = \frac{1}{2} > 0\)

Phương trình vô nghiệm.

d) \(2,3{t^2} + 1,15t - 6,4 = 0\)

Phương trình có ac = 2,3.(-6,4) = -14,72 < 0

Phương trình có hai nghiệm phân biệt.

Xem thêm : SGK Toán 9 - Cùng khám phá

Các bài tập cùng chuyên đề

Bài 1 :

Tính biệt thức $\Delta $ từ đó tìm số nghiệm của phương trình $9{x^2} - 15x + 3 = 0$.

Xem lời giải >>
Bài 2 :

Tính biệt thức \(\Delta \) từ đó tìm số nghiệm của phương trình \( - 13{x^2} + 22x - 13 = 0\).

Xem lời giải >>
Bài 3 :

Pi hỏi: Có thể nói gì về nghiệm của phương trình bậc hai \(a{x^2} + bx + c = 0\) nếu a và c trái dấu?

Em hãy trả lời câu hỏi của anh Pi.

Xem lời giải >>
Bài 4 :

Chứng minh rằng: Nếu \(ac < 0\) thì phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm phân biệt. Điều ngược lại có đúng không? Tại sao?

Xem lời giải >>