Một bức tranh được treo bởi một khung tranh có chiều dài 80 cm, chiều rộng 60 cm và viền khung rộng x (cm) như Hình 6.6.
a) Viết biểu thức biểu thị diện tích của bức tranh.
b) Tìm x, biết diện tích bức tranh là 0,3996 m2.
Theo đề bài ta có chiều rộng bức tranh là 60 – x (cm), 80 – x (cm).
Dựa vào công thức diện tích hình chữ nhật bằng chiều dài nhân chiều rộng lập phương trình ẩn x.
Dựa vào: Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta = {b^2} - 4ac\).
Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\);
Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\);
Nếu \(\Delta \) < 0 thì phương trình vô nghiệm.
a) Theo đề bài ta có chiều rộng bức tranh là 60 – x (cm), chiều dài là 80 – x (cm).
Biểu thức biểu thị diện tích của bức tranh là:
S = (60 – x).(80 – x) = \( - {x^2} - 140x + 4800 = 0\).
b) Biết diện tích bức tranh là 0,3996 m2 = 3996 cm2 ta có:
\(\begin{array}{l} - {x^2} - 140x + 4800 = 3996(x > 0)\\ - {x^2} - 140x + 804 = 0\end{array}\)
Ta có \(\Delta = {( - 140)^2} - 4.( - 1).804 = 22816,\sqrt \Delta \approx 151\).
Phương trình có hai nghiệm phân biệt: \({x_1} = 145,5(L),{x_2} = 5,5(TM)\).
Các bài tập cùng chuyên đề
Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $\Delta = {b^2} - 4ac$. Phương trình đã cho vô nghiệm khi:
Cho phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có biệt thức $\Delta = {b^2} - 4ac > 0$ . Khi đó phương trình có hai nghiệm là
Tính biệt thức $\Delta $ từ đó tìm các nghiệm (nếu có ) của phương trình ${x^2} - 2\sqrt 2 x + 2 = 0$
Tìm điều kiện của tham số $m$ để phương trình \( - {x^2} + 2mx - {m^2} - m = 0\) có hai nghiệm phân biệt .
Tìm các giá trị của tham số $m$ để phương trình \({x^2} + mx - m = 0\) có nghiệm kép.
Tìm điều kiện của tham số $m$ để phương trình \({x^2} + (1 - m)x - 3 = 0\) vô nghiệm
Cho phương trình ${x^2} - \left( {m - 1} \right)x - m = 0$. Kết luận nào sau đây là đúng?
Cho phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có biệt thức \(\Delta = {b^2} - 4ac > 0\), khi đó phương trình đã cho:
Cho phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có biệt thức \(\Delta = {b^2} - 4ac = 0\) . Khi đó phương trình có hai nghiệm là
Tính biệt thức \(\Delta \) từ đó tìm các nghiệm (nếu có ) của phương trình \(\sqrt 3 {x^2} + \left( {\sqrt 3 - 1} \right)x - 1 = 0\)
Tìm điều kiện của tham số m để phương trình \({x^2}\; - {\rm{ }}2(m - 2)x\; + {\rm{ }}{m^2} - 3m\; + {\rm{ }}5\; = 0\) có hai nghiệm phân biệt .
Tìm các giá trị của tham số m để phương trình \({x^2} + (3 - m)x - m + 6 = 0\) có nghiệm kép.
Tìm điều kiện của tham số m để phương trình \(2{x^2} + 5x + m - 1 = 0\) vô nghiệm
Cho phương trình \(2{{\rm{x}}^2} + (2m - 1)x + {m^2} - 2m + 5 = 0\). Kết luận nào sau đây là đúng?
Giải phương trình \(2{x^2} - 5x + 3 = 0\).
Giải phương trình: \({x^2} + 5x - 7 = 0\)
Phương trình \(2\left( {{x^2} - 1} \right) = x\left( {mx + 1} \right)\) có một nghiệm (tính cả nghiệm kép) khi:
Phương trình \(\left( {m - 2} \right){x^2} + 2x - 1 = 0\) có nghiệm kép khi:
Cho hai phương trình \({x^2} - 2x + a = 0\) và \({x^2} + x + 2a = 0.\) Để hai phương trình cùng vô nghiệm thì:
Áp dụng công thức nghiệm, giải các phương trình sau:
a) \(2{x^2} - 5x + 1 = 0\);
b) \({x^2} + 8x + 16 = 0\);
c) \({x^2} - x + 1 = 0\).
Dùng công thức nghiệm của phương trình bậc hai, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 2 = 0\);
b) \(4{x^2} + 28x + 49 = 0\);
c) \(3{x^2} - 3\sqrt 2 x + 1 = 0\).
Nhắc lại công thức tính hai nghiệm \({x_1},{x_2}\) của phương trình trên.
Các nghiệm của phương trình \({x^2} + 7x + 12 = 0\) là
A. \({x_1} = 3;{x_2} = 4\).
B. \({x_1} = - 3;{x_2} = - 4\).
C. \({x_1} = 3;{x_2} = - 4\).
D. \({x_1} = - 3;{x_2} = 4\).
Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức \(d = 0,05{v^2} + 1,1v\) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?
Cho phương trình bậc hai \({x^2} - 4x + 3 = 0\).
a) Thay mỗi dấu ? bằng số thích hợp để viết lại phương trình đã cho thành:
\({x^2} - 4x + 4 = ?\) hay \({\left( {x - 2} \right)^2} = ?\) (*)
b) Giải phương trình (*), từ đó tìm nghiệm của phương trình đã cho.
Giải các phương trình:
a) \(7{x^2} - 3x + 2 = 0\)
b) \(3{x^2} - 2\sqrt 3 x + 1 = 0\)
c) \( - 2{x^2} + 5x + 2 = 0\)
Trả lời câu hỏi trong Hoạt động khởi động (trang 11):
Sau khi được ném theo chiều từ dưới lên, độ cao h(m) của một quả bóng theo thời gian t (giây), được xác định bởi công thức h = 2 + 9t – 5t2 . Thời gian từ lúc ném cho đến khi bóng chạm đất là bao lâu?
Giải các phương trình:
a) x(x + 8) = 20
b) \(x(3x - 4) = 2{x^2} + 5\)
c) \({(x - 5)^2} + 7x = 65\)
d) \((2x + 3)(2x - 3) = 5(2x + 3)\)
Nghiệm của phương trình \({x^2} - 14x + 13 = 0\) là
A. \({x_1} = - 1;{x_2} = 13\)
B. \({x_1} = - 1;{x_2} = - 13\)
C. \({x_1} = 1;{x_2} = - 13\)
D. \({x_1} = 1;{x_2} = 13\)
Xét phương trình \(2{x^2} - 4x - 16 = 0\) (1)
Chia 2 vế của phương trình (1), ta được phương trình \({x^2} - 2x - 8 = 0\) (2)
a) Tìm số thích hợp cho “?” khi biến đổi phương trình (2) về dạng: ${{\left( x-? \right)}^{2}}=?$.
b) Từ đó, hãy giải phương trình 2.
c) Nêu các nghiệm của phương trình (1).