Vẽ đồ thị y = -2x2.
Cách vẽ đồ thị \(y = a{x^2}\left( {a \ne 0} \right)\) như sau:
- Vẽ hệ trục toạ độ Oxy.
- Lập bảng một số giá trị tương ứng của x và y. Đánh dấu các điểm tương ứng trên mặt phẳng toạ độ. Ta thường lấy điểm O và những điểm có hoành độ đối nhau.
- Vẽ đường thẳng parabol đi qua các điểm vừa đánh dấu.
Bảng một số giá trị tương ứng x và y:
Trên mặt phẳng toạ độ, đánh dấu các điểm A(-2;-8), B(-1;-2), O(0;0), B’(1;-2), A’(2; -8).
Đồ thị hàm số y = -2x2 là đường parabol đi qua năm điểm A, B, O, B’, A’.
Các bài tập cùng chuyên đề
Kết luận nào sau đây là sai khi nói về đồ thị của hàm số $y = a{x^2}\,\,$ với $a \ne 0$.
Cho hàm số $y = f\left( x \right) = \left( { - 2m + 1} \right){x^2}.$
Tìm giá trị của $m$ để đồ thị đi qua điểm $A\left( { - 2;4} \right).$
Cho hàm số \(y = \left( {2m + 2} \right){x^2}\). Tìm $m$ để đồ thị hàm số đi qua điểm $A\left( {x;y} \right)$ với $\left( {x;y} \right)$ là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\2x - y = 3\end{array} \right.\)
Hình vẽ dưới đây là của đồ thị hàm số nào?
Cho hàm số $y = \sqrt 3 {x^2}\,\,$có đồ thị là $(P)$. Có bao nhiêu điểm trên $\left( P \right)$ có tung độ gấp đôi hoành độ.
Trong các điểm $A(1;2);B( - 1; - 1);C(10; - 200);D\left( {\sqrt {10} ; - 10} \right)$ có bao nhiêu điểm thuộc đồ thị hàm số $\left( P \right): y = - {x^2}$
Cho $(P):y = \dfrac{1}{2}{x^2};(d):y = x - \dfrac{1}{2}$. Tìm toạ độ giao điểm của $(P)$ và $(d)$.
Cho parabol \(y = \dfrac{1}{4}{x^2}\). Xác định \(m\) để điểm \(A\left( {\sqrt 2 ;m} \right)\) nằm trên parabol.
Cho parabol$(P):y = 2{x^2}$ và đường thẳng $(d):y = x + 1$. Số giao điểm của đường thẳng $d$ và parabol $\left( P \right)$ là:
Cho parabol $(P):y = \left( {m - 1} \right){x^2}$ và đường thẳng $(d):y = 3 - 2x$. Tìm $m$ để đường thẳng $d$ cắt $\left( P \right)$ tại điểm có tung độ $y = 5$.
Cho parabol $(P):y = \left( {\dfrac{{1 - 2m}}{2}} \right){x^2}$ và đường thẳng $(d):y = 2x + 2$. Biết đường thẳng $d$ cắt $\left( P \right)$ tại một điểm có tung độ $y = 4$. Tìm hoành độ giao điểm còn lại của $d$ và parabol $\left( P \right)$.
Cho hàm số \(y = f\left( x \right) = \dfrac{{2m - 3}}{3}{x^2}\) . Tìm giá trị của \(m\) để đồ thị đi qua điểm \(B\left( { - 3;5} \right)\)
Cho hàm số \(y = \left( { - 3m + 1} \right){x^2}\). Tìm \(m\) để đồ thị hàm số đi qua điểm \(A\left( {x;y} \right)\) với \(\left( {x;y} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}4x - 3y = - 2\\x - 2y = - 3\end{array} \right.\)
Hình vẽ dưới đây là của đồ thị hàm số nào?
Cho hàm số \(y = - \dfrac{2}{5}{x^2}\,\,\)có đồ thị là \((P)\). Điểm trên \(\left( P \right)\) (khác gốc tọa độ \(O\left( {0;0} \right)\)) có tung độ gấp ba lần hoành độ thì có hoành độ là:
Trong các điểm \(A(5;5);B( - 5; - 5);C(10;20);D\left( {\sqrt {10} ;2} \right)\) có bao nhiêu điểm không thuộc đồ thị hàm số \(y = \dfrac{1}{5}{x^2}\,\left( P \right)\)
Cho \((P):y = 3{x^2};(d):y = - 4x - 1\). Tìm toạ độ giao điểm của \((P)\) và \((d)\).
Cho parabol \(y = - \sqrt 5 {x^2}\). Xác định m để điểm \(A\left( {m\sqrt 5 ; - 2\sqrt 5 } \right)\) nằm trên parabol.
Cho parabol\((P):y = \sqrt {5m + 1} .{x^2}\) và đường thẳng \((d):y = 5x + 4\). Tìm \(m\) để đường thẳng \(d\) cắt \(\left( P \right)\) tại điểm có tung độ \(y = 9\).
Cho parabol\((P):y = \left( {\sqrt {3m + 4} - \dfrac{7}{4}} \right){x^2}\) và đường thẳng \((d):y = 3x - 5\). Biết đường thẳng \(d\) cắt \(\left( P \right)\) tại một điểm có tung độ \(y = 1\). Tìm \(m\) và hoành độ giao điểm còn lại của \(d\) và parabol \(\left( P \right)\).
Cho parabol\((P):y = 5{x^2}\) và đường thẳng \((d):y = - 4x - 4\). Số giao điểm của đường thẳng \(d\) và parabol \(\left( P \right)\) là:
Xác định hàm số \(y = a{x^2}\) biết rằng đồ thị của hàm số đi qua điểm \(A\left( { - 2;5} \right)\).
Biết đồ thị hàm số \(y = a{x^2}\) đi qua điểm \(A\left( { - 1; - 2} \right),\) giá trị của \(a\) bằng:
Tìm tọa độ giao điểm của đồ thị hai hàm số \(y = - {x^2}\) và \(y = x - 2\)
Cổng vào một ngôi biệt thự có hình dạng là một parabol được biểu diễn bởi đồ thị hàm số \(y = - {x^2}.\) Biết khoảng cách giữa hai chân cổng là \(4\,m.\) Một chiếc ô tô tải có thùng xe là một hình hộp chữ nhật có chiều rộng là \(2,4\,m.\) Hỏi chiều cao lớn nhất có thể của ô tô là bao nhiêu để ô tô có thể đi qua cổng?
Đồ thị hàm số \(y = \dfrac{1}{4}{x^2}\) đi qua điểm
Cho hàm số \(y = a{x^2}\) có đồ thị như hình vẽ bên. Hàm số đó là:
Đồ thị trong hình bên là của hàm số:
Tìm \(m\) để đồ thị hàm số \(y = \left( {m + 5} \right){x^2}\) đi qua điểm \(A\left( { - 1;\,\,2} \right).\)
Tìm \(m\) để đồ thị hàm số \(y = \left( {2m + 1} \right){x^2}\) đi qua điểm \(A\left( {1;5} \right)\).