Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
b) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = \frac{c}{a}.\)
c) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
d) Nếu phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\) và nghiệm còn lại là \({x_2} = - \frac{c}{a}.\)
Nhớ lại cách nhẩm nghiệm trong trường hợp đặc biệt của phương trình bậc hai.
Chọn đáp án a) và c).
Các bài tập cùng chuyên đề
Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có $a - b + c = 0$. Khi đó
Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình ${x^2} - 6x + 7 = 0$
Biết rằng phương trình $\left( {m - 2} \right){x^2} - \left( {2m + 5} \right)x + m + 7 = 0\,\left( {m \ne 2} \right)$ luôn có nghiệm ${x_1};{x_2}$ với mọi $m$. Tìm ${x_1};{x_2}$ theo $m$.
Tìm các giá trị của \(m\) để phương trình \({x^2} - 2\left( {m - 3} \right)x + 8 - 4m = 0\) có hai nghiệm âm phân biệt.
Chọn phát biểu đúng. Phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có \(a + b + c = 0\). Khi đó
Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình \( - 3{x^2} + 5x + 1 = 0\).
Biết rằng phương trình \(m{x^2} + \left( {3m - 1} \right)x + 2m - 1 = 0\,\left( {m \ne 0} \right)\) luôn có nghiệm \({x_1};{x_2}\) với mọi \(m\). Tìm \({x_1};{x_2}\) theo \(m\).
Cho phương trình \(3{x^2} + 7x + m = 0\). Tìm \(m\) để phương trình có hai nghiệm phân biệt cùng âm.
Cho phương trình \(2{x^2} - 7x + 5 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a + b + c\).
b) Chứng tỏ rằng \({x_1} = 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Cho phương trình \(3{x^2} + 5x + 2 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a - b + c\).
b) Chứng tỏ rằng \({x_1} = - 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Tính nhẩm nghiệm của các phương trình sau:
a) \(3{x^2} - 11x + 8 = 0\);
b) \(4{x^2} + 15x + 11 = 0\);
c) \({x^2} + 2\sqrt 2 x + 2 = 0\), biết phương trình có một nghiệm là \(x = - \sqrt 2 \).
Tính nhẩm nghiệm của các phương trình sau:
a) \(2{x^2} - 9x + 7 = 0\);
b) \(3{x^2} + 11x + 8 = 0\);
c) \(7{x^2} - 15x + 2 = 0\), biết phương trình có một nghiệm \({x_1} = 2\).
Tính nhẩm nghiệm của các phương trình sau:
a) \(\sqrt 2 {x^2} - \left( {\sqrt 2 + 1} \right)x + 1 = 0\);
b) \(2{x^2} + \left( {\sqrt 3 - 1} \right)x - 3 + \sqrt 3 = 0\).
Tính nhẩm nghiệm của các phương trình:
a) \( - 315{x^2} - 27x + 342 = 0\)
b) \(2022{x^2} + 2023x + 1 = 0\)
Tính nhẩm nghiệm của các phương trình:
a) \(24{x^2} - 19x - 5 = 0\)
b) \(2,5{x^2} + 7,2x + 4,7 = 0\)
c) \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0\)
d) \(2{x^2} - (2 + \sqrt 3 )x + \sqrt 3 = 0\)
Tính nhẩm nghiệm của các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay.
a) \(14{x^2} - 13x - 27 = 0\)
b) \(5,4{x^2} + 8x + 2,6 = 0\)
c) \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)
d) \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5 = 0\)
Không tính \(\Delta\), giải phương trình \(4{x^2} - 7x + 3 = 0\).
Không tính \(\Delta\), giải phương trình \(2{x^2} - 9x - 11 = 0\).
Không tính \(\Delta \), giải phương trình:
a) \(3{x^2} - x - 2 = 0\)
b) \( - 4{x^2} + x + 5 = 0\)
c) \(2\sqrt 3 {x^2} + \left( {5 - 2\sqrt 3 } \right)x - 5 = 0\)
d) \( - 3\sqrt 2 {x^2} + \left( {4 - 3\sqrt 2 } \right)x + 4 = 0\)
Không tính \(\Delta \), hãy giải các phương trình:
a) \({x^2} - 3x + 2 = 0\)
b) \( - 3{x^2} + 5x + 8 = 0\)
c) \(\frac{1}{3}{x^2} + \frac{1}{6}x - \frac{1}{2} = 0\)
Cho phương trình \(3{x^2} - 7x + 4 = 0\)
a) Xác định hệ số a, b, c rồi tính a + b + c.
b) Chứng minh \({x_1} = 1\) là một nghiệm của phương trình.
c) Áp dụng định lí Viète để tìm nghiệm x2.
2. Cho phương trình \(2{x^2} + 5x + 3 = 0\)
a) Xác định hệ số a, b, c rồi tính a - b + c.
b) Chứng minh \({x_1} = - 1\) là một nghiệm của phương trình.
c) Tìm nghiệm x2.
Tính nhẩm nghiệm của các phương trình sau:
a) \( - 5{x^2} + 2x + 3 = 0\)
b) \(4{x^2} + 27x + 23 = 0\)
c) \(6,8{t^2} - 4,7x - 2,1 = 0\)
Tính nhẩm nghiệm của các phương trình sau:
a) \(13,6{x^2} - 15,8x + 2,2 = 0\)
b) \(\sqrt 2 {x^2} + \left( {\sqrt 3 + \sqrt 2 } \right)x + \sqrt 3 = 0\)
Với mỗi trường hợp sau, đã cho biết một nghiệm x1 của phương trình, hãy tìm nghiệm còn lại:
a) \(2{x^2} - 7x + 3 = 0;{x_1} = 3\)
b) \(3{x^2} - 4x - 6 + 4\sqrt 2 = 0;{x_1} = \sqrt 2 \)
c) \(2{x^2} + 7x + 3 = 0;{x_1} = - \frac{1}{2}\)
d) \({x^2} - 4mx + m + 2 = 0;{x_1} = 1\)
Tính nhẩm nghiệm của các phương trình sau:
a) \(\sqrt 3 {x^2} - \left( {\sqrt 3 + 1} \right)x + 1 = 0\);
b) \(3{x^2} + \left( {\sqrt 5 - 1} \right)x - 4 + \sqrt 5 = 0\);
c) \(2{x^2} - 3\sqrt 5 x + 5 = 0\), biết rằng phương trình có một nghiệm là \(x = \sqrt 5 \).
Chứng tỏ rằng nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm là \({x_1}\), \({x_2}\) thì đa thức \(a{x^2} + bx + c\) được phân tích được thành nhân tử như sau: \(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\).
Áp dụng: Phân tích các đa thức sau thành nhân tử: \(2{x^2} - 9x + 7\); \(4{x^2} + \left( {\sqrt 2 - 3} \right)x - 7 + \sqrt 2 \).
Tính nhẩm nghiệm của các phương trình:
a) 24x2 – 19x – 5 = 0
b) 2,5x2 + 7,2x + 4,7 = 0
c) \(\frac{3}{2}{x^2} + 5x + \frac{7}{2} = 0\)
d) \(2{x^2} - (2 + \sqrt 3 )x + \sqrt 3 = 0\)
Nghiệm của phương trình x2 – 15x – 16 = 0 là
A. \({x_1} = - 1;{x_2} = 16\)
B. \({x_1} = - 1;{x_2} = - 16\)
C. \({x_1} = 1;{x_2} = - 16\)
D. \({x_1} = 1;{x_2} = 16\)
Nếu phương trình \({x^2} - 2mx - m = 0\) có một nghiệm là -1 thì nghiệm của lại là:
A. 2.
B. -2.
C. -m.
D. m.
Tính nhẩm nghiệm của các phương trình sau:
a) \(2{x^2} - 9x + 7 = 0\);
b) \(3{x^2} + 11x + 8 = 0\);
c) \(7{x^2} - 15x + 2 = 0\), biết phương trình có một nghiệm \({x_1} = 2\).