Đề bài

Cho hai số có tổng bằng 5 và tích bằng 6.

a)  Gọi một số là x. Tính số còn lại theo x.

b)  Lập phương trình bậc hai ẩn x.

Phương pháp giải

a)  Biểu diễn số còn lại theo x và tổng của 2 số.

b)  Lập phương trình dựa cào tích của 2 số.

Lời giải của GV Loigiaihay.com

a)  ĐK: \(x \in R\)

Vì hai số có tổng bằng 5 nên số còn lại là \(5 - x\).

b)  Hai số có tích bằng 6 nên ta được phương trình:

\(\begin{array}{l}x.(5 - x) = 6\\ - {x^2} + 5x = 6\\{x^2} - 5x + 6 = 0\end{array}\)

Xem thêm : SGK Toán 9 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Cho hai số có tổng là $S$ và tích là $P$ với ${S^2} \ge 4P$. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây?

Xem lời giải >>
Bài 2 :

Tìm $u - v$ biết rằng $u + v = 15,uv = 36$ và $u > v$

Xem lời giải >>
Bài 3 :

Lập phương trình nhận hai số $3 - \sqrt 5 $ và $3 + \sqrt 5 $ làm nghiệm.

Xem lời giải >>
Bài 4 :

Biết rằng phương trình \({x^2} - \left( {2a - 1} \right)x - 4a - 3 = 0\) luôn có hai nghiệm ${x_1};{x_2}$ với mọi $a$. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào \(a\).

Xem lời giải >>
Bài 5 :

Hai số \(u = m;v = 1 - m\) là nghiệm của phương trình nào dưới đây?

Xem lời giải >>
Bài 6 :

Tìm \(u - 2v\) biết rằng \(u + v = 14,uv = 40\) và \(u < v\)

Xem lời giải >>
Bài 7 :

Lập phương trình nhận hai số \(2 + \sqrt 7 \) và \(2 - \sqrt 7 \) làm nghiệm.

Xem lời giải >>
Bài 8 :

Biết rằng phương trình \({x^2} - \left( {m + 5} \right)x + 3m + 6 = 0\) luôn có hai nghiệm \({x_1};{x_2}\) với mọi \(m\). Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào \(m\).

Xem lời giải >>
Bài 9 :

Gọi \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình \({x^2} - 2x - 1 = 0\). Hãy lập một phương trình bậc hai một ẩn có hai nghiệm là \(\left| {{{\left( {{x_1}} \right)}^3}} \right|\), \(\left| {{{\left( {{x_2}} \right)}^3}} \right|\).

Xem lời giải >>
Bài 10 :

Vuông nói: Hãy tìm một phương trình bậc hai mà tổng và tích các nghiệm của phương trình là hai số đối nhau.

Tròn nói: Tớ tìm ra rồi! Đó là phương trình \({x^2} + x + 1 = 0\).

Em có đồng ý với ý kiến của Tròn không? Vì sao?

Xem lời giải >>
Bài 11 :

Giả sử hai số có tổng \(S = 5\) và tích \(P = 6\). Thực hiện các bước sau để lập phương trình bậc hai nhận hai số đó làm nghiệm.

a) Gọi một số là x. Tính số kia theo x.

b) Sử dụng kết quả câu a và giả thiết, hãy lập phương trình để tìm x.

Xem lời giải >>
Bài 12 :

Tìm hai số biết tổng của chúng bằng \( - 11\), tích của chúng bằng 28.

Xem lời giải >>
Bài 13 :

Tìm hai số u và v, biết:

a) \(u + v = 20,uv = 99\);

b) \(u + v = 2,uv = 15\).

Xem lời giải >>
Bài 14 :

Một bể bơi hình chữ nhật có diện tích \(300{m^2}\) và chu vi là 74m. Tính các kích thước của bể bơi này.

Xem lời giải >>
Bài 15 :

Chiều dài và chiều rộng của hình chữ nhật có chu vi 20cm và diện tích \(24c{m^2}\) là

A. 5cm và 4cm.

B. 6cm và 4cm.

C. 8cm và 3cm.

D. 10cm và 2cm.

Xem lời giải >>
Bài 16 :

Tìm hai số u và v, biết:

a) \(u + v = 13\) và \(uv = 40\);

b) \(u - v = 4\) và \(uv = 77\).

Xem lời giải >>
Bài 17 :

Tìm hai số u và v, biết:

a) \(u + v = 15,uv = 56\);

b) \({u^2} + {v^2} = 125,uv = 22\).

Xem lời giải >>
Bài 18 :

Cho hai số u và v có tổng u + v = 8 và tích uv = 15.

a) Từ u + v = 8, biểu diễn u theo v rồi thay vào uv = 15, ta nhận được phương trình ẩn v nào?

b) Nếu biểu diễn v theo u thì nhận được phương trình ẩn u nào?

Xem lời giải >>
Bài 19 :

a) Tìm hai số, biết tổng của chúng bằng 15 và tích của chúng bằng 44.

b) Có tồn tại hai số a và b có tổng bằng 7 và tích bằng 13 không?

Xem lời giải >>
Bài 20 :

Tìm chiều dài và chiều rộng trong Hoạt động khởi động (trang 18).

Khu vườn nhà kính hình chữ nhật của bác Thanh có nửa chu vi là 60 m, diện tích 884 m2. Làm thế nào để tính chiều dài và chiều rộng của khu vườn?

Xem lời giải >>
Bài 21 :

Tìm hai số u  và v (nếu có) trong mỗi trường hợp sau:

a) u + v = 29, uv = 154

b) u + v = -6, uv = -135

c) u + v = 5, uv = 24

Xem lời giải >>
Bài 22 :

Một mảnh vườn hình chữ nhật chu vi là 116 m, diện tích 805 m2. Tìm chiều dài và chiều rộng của mảnh vườn đó?

Xem lời giải >>
Bài 23 :

Tìm hai số u  và v (nếu có) trong mỗi trường hợp sau:

a) u + v = -2, uv = -35

b) u + v = 8, uv = -105

Xem lời giải >>
Bài 24 :

Giải bài toán ở phần mở đầu:

Đà Lạt là thành phố du lịch, có khí hậu rất mát mẻ. Nơi đây trồng rất nhiều loại hoa. Để trồng hoa, người ta thường tạo các nhà kính được bao quanh bởi hàng rào dạng hình chữ nhật và tạo mái che bên trên. Giả sử một nhà kính có độ dài các hàng rào bao quanh là 68m, diện tích trồng hoa là 240m2. Xác định chiều dài và chiều rộng của nhà kính.

Xem lời giải >>
Bài 25 :

Tìm hai số trong mỗi trường hợp sau:

a)   Tổng của chúng bằng 7 và tích của chúng bằng 12.

b)  Tổng của chúng bằng 1 và tích của chúng bằng -6.

Xem lời giải >>
Bài 26 :

Tìm hai số biết tổng của chúng bằng \(4\sqrt 2 \) và tích của chúng bằng 6.

Xem lời giải >>
Bài 27 :

Hiện nay, tổng số tuổi của hai em Trọng và Nhân là 13. Gọi x là số tuổi hiện nay của Nhân (x là số nguyên dương).

a) Hãy biểu diễn số tuổi của Trọng và tích số tuổi của hai em hiện nay theo x.

b) Biết tích số tuổi hai em hiện nay là 40, hãy lập phương trình biểu thị thông tin này.

Xem lời giải >>
Bài 28 :

Tìm hai số, biết tổng và tích của chúng lần lượt bằng:

a) 2 và – 15

b) 3 và 5

Xem lời giải >>
Bài 29 :

Hãy trả lời câu hỏi phần khởi động:

Trong mảnh đất của mình, bác Thiện muốn dành một phần đất hình chữ nhật có diện tích 24 m2 để trồng hoa. Bác Thiện đang có 20 m lưới để rào xung quanh phần đất trồng hoa đó. Vậy bác Thiện nên chọn kích thước phần đất trồng hoa như thế nào để dùng vừa hết 20 m lưới?

Xem lời giải >>
Bài 30 :

Tìm hai số u và v trong mỗi trường hợp sau:

a) u + v = 35, uv = 276

b) y + v = -13, uv = -68

c) u + v = 3, uv = 11.

Xem lời giải >>