Đề bài

Chứng minh rằng: Nếu \(ac < 0\) thì phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm phân biệt. Điều ngược lại có đúng không? Tại sao?

Phương pháp giải

Lập luận từ \(\Delta = {b^2} - 4ac\) để xét dấu của \(ac\).

Lời giải của GV Loigiaihay.com

Chiều xuôi: Nếu \(ac < 0\) thì phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm phân biệt.

Ta có \(\Delta = {b^2} - 4ac\). Vì \(ac < 0\) nên \( - 4ac > 0\), suy ra \({b^2} - 4ac > 0\)(do \({b^2} > 0\)), do đó \(\Delta > 0\)

Vậy nếu \(ac < 0\) thì phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm phân biệt.

Chiều ngược: Phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm phân biệt thì \(ac < 0\).

Phương trình đã cho có hai nghiệm phân biệt suy ra \(\Delta = {b^2} - 4ac > 0\) nên \({b^2} > 4ac\).

Ta thấy có 2 trường hợp xảy ra:

TH1: \(4ac > 0\) nên \(ac > 0\)

TH2: \(4ac < 0\) nên \(ac < 0\)

Vậy khẳng định chiều ngược lại không đúng.

Xem thêm : SGK Toán 9 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Pi hỏi: Có thể nói gì về nghiệm của phương trình bậc hai \(a{x^2} + bx + c = 0\) nếu a và c trái dấu?

Em hãy trả lời câu hỏi của anh Pi.

Xem lời giải >>
Bài 2 :

Không giải các phương trình, hãy xác định số nghiệm của mỗi phương trình sau:

a) \(6{x^2} - 2x + 9 = 0\)

b) \(3{x^2} - 2\sqrt {15} x + 5 = 0\)

c) \(\frac{1}{3}{y^2} - 5y + \frac{3}{2} = 0\)

d) \(2,3{t^2} + 1,15t - 6,4 = 0\)

Xem lời giải >>