Đề bài

Quan sát đồ thị của hàm số \(y = \frac{1}{2}{x^2}\) ở Hình 4, hãy nêu nhận xét về vị trí cặp điểm E và H, F và G đối với trục Oy.

Phương pháp giải

Chú ý về tính đối xứng của các cặp điểm so với trục Oy.

Lời giải của GV Loigiaihay.com

Điểm E đối xứng với H, F đối xứng với G qua Oy.

Xem thêm : SGK Toán 9 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Xét đồ thị của hàm số \(y = 2{x^2}\) đã vẽ ở HĐ3 (H.6.3).

a) Đồ thị nằm về phía trên hay phía dưới trục hoành? Điểm nào là điểm thấp nhất của đồ thị hàm số.

b) So sánh hoành độ và tung độ các cặp điểm thuộc đồ thị: A(1; 2) và \(A'\left( { - 1;2} \right)\); B(2; 8) và \(B'\left( { - 2;8} \right)\).

Từ đó, hãy nhận xét mối liên hệ về vị trí giữa các cặp điểm nêu trên.

c) Tìm điểm C có hoành độ \(x = \frac{1}{2}\) thuộc đồ thị. Xác định tọa độ của điểm C’ đối xứng với điểm C qua trục tung Oy và cho biết điểm C’ có thuộc đồ thị hàm số hay không.

Xem lời giải >>
Bài 2 :

Vẽ đồ thị của hàm số \(y = \frac{1}{2}{x^2}\). Tìm các điểm thuộc đồ thị có tung độ bằng 2 và nhận xét về tính đối xứng giữa các điểm đó.

Xem lời giải >>
Bài 3 :

Cho hàm số \(y = f\left( x \right) = a{x^2}\left( {a \ne 0} \right)\).

a) Chứng tỏ rằng nếu \(\left( {{x_0};{y_0}} \right)\) là một điểm thuộc đồ thị hàm số thì điểm \(\left( { - {x_0};{y_0}} \right)\) cũng nằm trên đồ thị hàm số đó.

b) Chứng minh rằng \(f\left( { - x} \right) = f\left( x \right)\) với mọi x thuộc \(\mathbb{R}\).

Xem lời giải >>
Bài 4 :

Cho điểm \(M\left( {1\,;\, - 5} \right)\) thuộc parabol \(\left( P \right)\) \(y =  - 5{x^2}\;\). Tọa độ của N là điểm đối xứng với \(M\)qua trục tung là:

Xem lời giải >>
Bài 5 :

Cho điểm \(M\) có hoành độ \(x = 4\) thuộc parabol \(\left( P \right)\) \(y = \frac{1}{2}{x^2}\). Tọa độ của \(N\) là điểm đối xứng với \(M\) qua trục tung là:

Xem lời giải >>