Đề bài

Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền góp mỗi người là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người?

Phương pháp giải

+ Gọi ẩn \(x\). Tìm điều kiện và đơn vị của ẩn.

+ Biểu diễn các đại lượng thông qua \(x\).

+ Tìm phương trình liên hệ.

+ Giải phương trình.

+ Đối chiếu với điều kiện của \(x\).

+ Kết luận bài toán.

Lời giải của GV Loigiaihay.com

Gọi số bạn trẻ của nhóm là \(x\) (người, \(x \in {\mathbb{N}^*}\)).

Số vốn mỗi người dự định góp là: \(\frac{{240}}{x}\) ( triệu đồng)

Nếu thêm 2 người, thì số bạn trẻ của nhóm là: \(x + 2\) (người)

Số vốn sau khi thêm 2 người, mỗi người phải góp là: \(\frac{{240}}{{x + 2}}\) (triệu đồng)

Do nếu thêm 2 người tham gia thì số tiền mỗi người góp giảm đi 4 triệu đồng nên ta có phương trình:

\(\begin{array}{l}\frac{{240}}{x} - 4 = \frac{{240}}{{x + 2}}\\\frac{{240\left( {x + 2} \right)}}{{x\left( {x + 2} \right)}} - \frac{{4x\left( {x + 2} \right)}}{{x\left( {x + 2} \right)}} = \frac{{240x}}{{x\left( {x + 2} \right)}}\\240\left( {x + 2} \right) - 4x\left( {x + 2} \right) = 240x\\240x + 480 - 4{x^2} - 8x - 240x = 0\\ - 4{x^2} - 8x + 480 = 0\\{x^2} + 2x - 120 = 0\\\left( {x - 10} \right)\left( {x + 12} \right) = 0\end{array}\)

Để giải phương trình trên, ta giải hai phương trình sau:

*) \(x - 10 = 0\)

\(x = 10\);

*)\(x + 12 = 0\)

\(x = - 12\).

Ta thấy

+ \(x = 10\) thỏa mãn điều kiện đề bài;

+ \(x = - 12\) không thỏa mãn điều kiện đề bài.

Vậy nhóm bạn trẻ có 10 người.

Xem thêm : SGK Toán 9 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai:

Xem lời giải >>
Bài 2 :

Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)

Xem lời giải >>
Bài 3 :

Tổng các nghiệm của phương trình: \(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}\)  là

Xem lời giải >>
Bài 4 :

Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\)  ta được các nghiệm là \({x_1};{x_2}\)  với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)

Xem lời giải >>
Bài 5 :

Tích các nghiệm của phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) là

Xem lời giải >>
Bài 6 :

Giải các phương trình

a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)

b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)

c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)

d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)

Xem lời giải >>