Một nhóm bạn trẻ cùng tham gia khởi nghiệp và dự định góp vốn là 240 triệu đồng, số tiền góp mỗi người là như nhau. Nếu có thêm 2 người tham gia cùng thì số tiền mỗi người góp giảm đi 4 triệu đồng. Hỏi nhóm bạn trẻ đó có bao nhiêu người?
+ Gọi ẩn \(x\). Tìm điều kiện và đơn vị của ẩn.
+ Biểu diễn các đại lượng thông qua \(x\).
+ Tìm phương trình liên hệ.
+ Giải phương trình.
+ Đối chiếu với điều kiện của \(x\).
+ Kết luận bài toán.
Gọi số bạn trẻ của nhóm là \(x\) (người, \(x \in {\mathbb{N}^*}\)).
Số vốn mỗi người dự định góp là: \(\frac{{240}}{x}\) ( triệu đồng)
Nếu thêm 2 người, thì số bạn trẻ của nhóm là: \(x + 2\) (người)
Số vốn sau khi thêm 2 người, mỗi người phải góp là: \(\frac{{240}}{{x + 2}}\) (triệu đồng)
Do nếu thêm 2 người tham gia thì số tiền mỗi người góp giảm đi 4 triệu đồng nên ta có phương trình:
\(\begin{array}{l}\frac{{240}}{x} - 4 = \frac{{240}}{{x + 2}}\\\frac{{240\left( {x + 2} \right)}}{{x\left( {x + 2} \right)}} - \frac{{4x\left( {x + 2} \right)}}{{x\left( {x + 2} \right)}} = \frac{{240x}}{{x\left( {x + 2} \right)}}\\240\left( {x + 2} \right) - 4x\left( {x + 2} \right) = 240x\\240x + 480 - 4{x^2} - 8x - 240x = 0\\ - 4{x^2} - 8x + 480 = 0\\{x^2} + 2x - 120 = 0\\\left( {x - 10} \right)\left( {x + 12} \right) = 0\end{array}\)
Để giải phương trình trên, ta giải hai phương trình sau:
*) \(x - 10 = 0\)
\(x = 10\);
*)\(x + 12 = 0\)
\(x = - 12\).
Ta thấy
+ \(x = 10\) thỏa mãn điều kiện đề bài;
+ \(x = - 12\) không thỏa mãn điều kiện đề bài.
Vậy nhóm bạn trẻ có 10 người.
Các bài tập cùng chuyên đề
Chọn câu sai:
Tìm điều kiện xác định của phương trình:\(\begin{array}{l}\dfrac{{4x}}{{4{x^2} - 8x + 7}} + \dfrac{{3x}}{{4{x^2} - 10x + 7}} = 1\\\end{array}\)
Tổng các nghiệm của phương trình: \(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}\) là
Giải phương trình: \(20{\left( {\dfrac{{x - 2}}{{x + 1}}} \right)^2} - 5{\left( {\dfrac{{x + 2}}{{x - 1}}} \right)^2} + 48\dfrac{{{x^2} - 4}}{{{x^2} - 1}} = 0\) ta được các nghiệm là \({x_1};{x_2}\) với \({x_1} < {x_2}\) . Tính \(3{x_1} - {x_2}.\)
Tích các nghiệm của phương trình: \(\left( {{x^2} - 3x + 3} \right)\left( {{x^2} - 2x + 3} \right) = 2{x^2}\) là
Giải các phương trình
a) \(\left( {3x + 5} \right)\left( {\frac{{12}}{5} - 2x} \right) = 0\)
b) \({\left( {7x - 1} \right)^2} = 4{\left( {1 - 2x} \right)^2}\)
c) \(\frac{{2{x^2}}}{{4x + 3}} - \frac{{4x - 3}}{8} = 1\)
d) \(\frac{x}{{{x^2} + 4x - 5}} - \frac{2}{{x - 1}} = 0\)