Trên một mảnh đất có dạng hình chữ nhật với chu vi bằng 52m. Trên mảnh đất đó, người ta làm một vườn có dạng hình chữ nhật có diện tích là 112m2 và một lối đi xung quanh vườn rộng 1m (Hình 2). Tính các kích thước của mảnh đất đó.
+ Gọi ẩn x. Tìm điều kiện và đơn vị của ẩn.
+ Biểu diễn các đại lượng thông qua x.
+ Tìm phương trình liên hệ.
+ Giải phương trình.
+ Đối chiếu với điều kiện của x.
+ Kết luận bài toán.
Nửa chu vi của mảnh đất là: 52:2=26(m)
Gọi chiều dài của mảnh đất là x(m,2<x<26).
Chiều rộng của mảnh đất là: 26−x(m)
Chiều dài của vườn rau là: x−2(m)
Chiều rộng của vườn rau là: 26−x−2=24−x(m)
Do diện tích của vườn rau là 112m2 nên ta có phương trình:
(x−2)(24−x)=112
24x−x2−48+2x−112=0
−x2+26x−160=0
x2−26x+160=0
(x−13)2−9=0
(x−13−3)(x−13+3)=0
(x−16)(x−10)=0.
Để giải phương trình trên, ta giải hai phương trình sau:
*) x−16=0
x=16;
*) x−10=0
x=10.
Vậy chiều dài của mảnh đất là 16(m)
Chiều rộng của mảnh đất là 10(m)
Các bài tập cùng chuyên đề
Chọn khẳng định đúng.
Tích các nghiệm của phương trình x3+4x2+x−6=0 là
Nghiệm lớn nhất của phương trình (x2−1)(2x−1)=(x2−1)(x+3) là
Nghiệm nhỏ nhất của phương trình (2x+1)2=(x−1)2 là
Tập nghiệm của phương trình (x2+x)(x2+x+1)=6 là
Tìm m để phương trình (2m−5)x−2m2+8=43 có nghiệm x=−7.
Tập nghiệm của phương trình
(5x2−2x+10)2=(3x2+10x−8)2 là:
Biết rằng phương trình (x2−1)2=4x+1 có nghiệm lớn nhất là x0 . Chọn hẳng định đúng.
Cho phương trình (1): x(x2−4x+5)=0 và phương trình (2): (x2−1)(x2+4x+5)=0.
Chọn khẳng định đúng.
Phương trình x2+x=0 có số nghiệm là
Phương trình 2x+k=x−1 nhận x=2 là nghiệm khi
Giải phương trình: 2x(x−5)+21=x(2x+1)−12 ta được nghiệm x0. Chọn câu đúng.
Số nghiệm của phương trình (x+2)(x2−3x+5)=(x+2)x2 là
Cho phương trình: (4m2−9)x=2m2+m−3 . Tìm m để phương trình có vô số nghiệm
Cho phương trình 5−6(2x−3)=x(3−2x)+5. Chọn khẳng định đúng.
Tích các nghiệm của phương trình x3−3x2−x+3=0 là
Số nghiệm của phương trình (x2+9)(x−1)=(x2+9)(x+3) là
Nghiệm nhỏ nhất của phương trình (−12x+1)2=(32x−1)2 là
Tập nghiệm của phương trình (x2−x−1)(x2−x+1)=3 là
Tìm m để phương trình (2m−5)x−2m2−7=0 nhận x=−3 làm nghiệm.
Số nghiệm của phương trình (5x2−2x+10)3=(3x2+10x−6)3 là:
Biết rằng phương trình (4x2−1)2=8x+1 có nghiệm lớn nhất là x0. Chọn khẳng định đúng.
Cho phương trình x4−8x2+16=0. Chọn khẳng định đúng.
Giải các phương trình sau:
a) (3x+1)(2−4x)=0;
b) x2−3x=2x−6.
Giải bài toán ở tình huống mở đầu.
Tình huống mở đầu: Trong một khu vườn hình vuông có cạnh bằng 15m người ta làm một lối đi xung quanh vườn có bề rộng là x (m) (H.2.1). Để diện tích phần đất còn lại là 169m2 thì bề rộng x của lối đi là bao nhiêu?
Giải các phương trình sau:
a) (x2−4)+x(x−2)=0;
b) (2x+1)2−9x2=0.
Bác An có một mảnh đất hình chữ nhật với chiều dài 14m và chiều rộng 12m. Bác dự định xây nhà trên mảnh đất đó và dành một phần diện tích đất để làm sân vườn như hình 2.3. Biết diện tích đất làm nhà là 100m2. Hỏi x bằng bao nhiêu mét?
Giải các phương trình sau:
a) 2(x+1)=(5x−1)(x+1);
b) (−4x+3)x=(2x+5)x.
Giải các phương trình sau:
a) (3x−1)2−(x+2)2=0;
b) x(x+1)=2(x2−1).
Giải các phương trình:
a) 2x(x+6)+5(x+6)=0;
b) x(3x+5)−6x−10=0.