Đề bài

Trên một mảnh đất có dạng hình chữ nhật với chu vi bằng 52m. Trên mảnh đất đó, người ta làm một vườn có dạng hình chữ nhật có diện tích là \(112{m^2}\) và một lối đi xung quanh vườn rộng 1m (Hình 2). Tính các kích thước của mảnh đất đó.

Phương pháp giải

+ Gọi ẩn \(x\). Tìm điều kiện và đơn vị của ẩn.

+ Biểu diễn các đại lượng thông qua \(x\).

+ Tìm phương trình liên hệ.

+ Giải phương trình.

+ Đối chiếu với điều kiện của \(x\).

+ Kết luận bài toán.

Lời giải của GV Loigiaihay.com

Nửa chu vi của mảnh đất là: \(52:2 = 26\left( m \right)\)

Gọi chiều dài của mảnh đất là \(x\left( {m,2 < x < 26} \right)\).

Chiều rộng của mảnh đất là: \(26 - x\,\left( m \right)\)

Chiều dài của vườn rau là: \(x - 2\,\,\left( m \right)\)

Chiều rộng của vườn rau là: \(26 - x - 2 = 24 - x\,\,\left( m \right)\)

Do diện tích của vườn rau là \(112{m^2}\) nên ta có phương trình:

\(\left( {x - 2} \right)\left( {24 - x} \right) = 112\)

\(24x - {x^2} - 48 + 2x - 112 = 0\)

\( - {x^2} + 26x - 160 = 0\)

\({x^2} - 26x + 160 = 0\)

\({\left( {x - 13} \right)^2} - 9 = 0\)

\(\left( {x - 13 - 3} \right)\left( {x - 13 + 3} \right) = 0\)

\(\left( {x - 16} \right)\left( {x - 10} \right) = 0\).

Để giải phương trình trên, ta giải hai phương trình sau:

*) \(x - 16 = 0\)                                         

\(x = 16\);                                                      

*) \(x - 10 = 0\)

\(x = 10\).

Vậy chiều dài của mảnh đất là \(16\left( m \right)\)

Chiều rộng của mảnh đất là \(10\left( m \right)\)

Xem thêm : SGK Toán 9 - Cánh diều

Các bài tập cùng chuyên đề

Bài 1 :

Chọn khẳng định đúng.

Xem lời giải >>
Bài 2 :

Tích các nghiệm của phương trình \({x^3} + 4{x^2} + x - 6 = 0\) là

Xem lời giải >>
Bài 3 :

Nghiệm lớn nhất của phương trình \(\left( {{x^2} - 1} \right)\left( {2x - 1} \right) = \left( {{x^2} - 1} \right)\left( {x + 3} \right)\) là

Xem lời giải >>
Bài 4 :

Nghiệm nhỏ nhất của phương trình \({\left( {2x + 1} \right)^2} = {\left( {x - 1} \right)^2}\) là

Xem lời giải >>
Bài 5 :

Tập nghiệm của phương trình \(\left( {{x^2} + x} \right)\left( {{x^2} + x + 1} \right) = 6\) là

Xem lời giải >>
Bài 6 :

Tìm m để phương trình \(\left( {2m - 5} \right)x - 2{m^2} + 8 = 43\) có nghiệm \(x =  - 7\).

Xem lời giải >>
Bài 7 :

Tập nghiệm của phương trình

\({\left( {5{x^2} - 2x + 10} \right)^2} = {\left( {3{x^2} + 10x - 8} \right)^2}\) là:  

Xem lời giải >>
Bài 8 :

Biết rằng phương trình \({\left( {{x^2} - 1} \right)^2} = 4x + 1\) có nghiệm lớn nhất là \({x_0}\) . Chọn hẳng định đúng.

Xem lời giải >>
Bài 9 :

Cho phương trình $\left( 1 \right):$ \(x\left( {{x^2} - 4x + 5} \right) = 0\) và phương trình \(\left( 2 \right):\) \(\left( {{x^2} - 1} \right)\left( {{x^2} + 4x + 5} \right) = 0\).

Chọn khẳng định đúng.

Xem lời giải >>
Bài 10 :

Phương trình \({x^2} + x = 0\) có số nghiệm là

Xem lời giải >>
Bài 11 :

Phương trình \(2x + k = x - 1\) nhận \(x = 2\) là nghiệm khi

Xem lời giải >>
Bài 12 :

Giải phương trình: \(2x\left( {x - 5} \right) + 21 = x\left( {2x + 1} \right) - 12\)  ta được nghiệm \({x_0}.\) Chọn câu đúng.

Xem lời giải >>
Bài 13 :

Số nghiệm của phương trình \(\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\) là

Xem lời giải >>
Bài 14 :

Cho phương trình: \(\left( {4{m^2} - 9} \right)x = 2{m^2} + m - 3\) . Tìm m để phương trình có vô số nghiệm

Xem lời giải >>
Bài 15 :

Cho phương trình \(5 - 6\left( {2x - 3} \right) = x\left( {3 - 2x} \right) + 5\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 16 :

Tích các nghiệm của phương trình \({x^3} - 3{x^2} - x + 3 = 0\) là

Xem lời giải >>
Bài 17 :

Số nghiệm của phương trình \(\left( {{x^2} + 9} \right)\left( {x - 1} \right) = \left( {{x^2} + 9} \right)\left( {x + 3} \right)\) là

Xem lời giải >>
Bài 18 :

Nghiệm nhỏ nhất của phương trình \({\left( { - \dfrac{1}{2}x + 1} \right)^2} = {\left( {\dfrac{3}{2}x - 1} \right)^2}\) là

Xem lời giải >>
Bài 19 :

Tập nghiệm của phương trình \(\left( {{x^2} - x - 1} \right)\left( {{x^2} - x + 1} \right) = 3\) là

Xem lời giải >>
Bài 20 :

Tìm \(m\) để phương trình \(\left( {2m - 5} \right)x - 2{m^2} - 7 = 0\) nhận \(x = - 3\) làm nghiệm.

Xem lời giải >>
Bài 21 :

Số nghiệm của phương trình \({\left( {5{x^2} - 2x + 10} \right)^3} = {\left( {3{x^2} + 10x - 6} \right)^3}\) là:  

Xem lời giải >>
Bài 22 :

Biết rằng phương trình \({\left( {4{x^2} - 1} \right)^2} = 8x + 1\) có nghiệm lớn nhất là \({x_0}\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 23 :

Cho phương trình \({x^4} - 8{x^2} + 16 = 0\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 24 :

Giải các phương trình sau:

a) \(\left( {3x + 1} \right)\left( {2 - 4x} \right) = 0;\)

b) \({x^2} - 3x = 2x - 6.\)

Xem lời giải >>
Bài 25 :

Giải bài toán ở tình huống mở đầu.

Tình huống mở đầu: Trong một khu vườn hình vuông có cạnh bằng 15m người ta làm một lối đi xung quanh vườn có bề rộng là x (m) (H.2.1). Để diện tích phần đất còn lại là \(169{m^2}\) thì bề rộng x của lối đi là bao nhiêu?

Xem lời giải >>
Bài 26 :

Giải các phương trình sau:

a) \(\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0;\)

b) \({\left( {2x + 1} \right)^2} - 9{x^2} = 0.\)

Xem lời giải >>
Bài 27 :

Bác An có một mảnh đất hình chữ nhật với chiều dài 14m và chiều rộng 12m. Bác dự định xây nhà trên mảnh đất đó và dành một phần diện tích đất để làm sân vườn như hình 2.3. Biết diện tích đất làm nhà là \(100{m^2}.\) Hỏi x bằng bao nhiêu mét?

Xem lời giải >>
Bài 28 :

Giải các phương trình sau:

a) \(2\left( {x + 1} \right) = \left( {5x - 1} \right)\left( {x + 1} \right);\)

b) \(\left( { - 4x + 3} \right)x = \left( {2x + 5} \right)x.\)

Xem lời giải >>
Bài 29 :

Giải các phương trình sau:

a) \({\left( {3x - 1} \right)^2} - {\left( {x + 2} \right)^2} = 0;\)

b) \(x\left( {x + 1} \right) = 2\left( {{x^2} - 1} \right).\)

Xem lời giải >>
Bài 30 :

Giải các phương trình:

a) \(2x\left( {x + 6} \right) + 5\left( {x + 6} \right) = 0\);

b) \(x\left( {3x + 5} \right) - 6x - 10 = 0\).

Xem lời giải >>