Đề bài

Phần bên trong của một cái bể hình trụ có chiều cao 2,1 m và bán kính đáy 1,5 m. Tính thể tích lượng nước trong bể biết mực nước bằng \(\frac{2}{3}\)chiều cao của bể (kết quả làm tròn đến hàng đơn vị).

Phương pháp giải

Dựa vào công thức tính thể tích của hình trụ: V = S.h = \(\pi \)r2h

Lời giải của GV Loigiaihay.com

Thể tích của bể là: V = \(\pi \)r2h = \(\pi \).1,52.2,1 = 4,725\(\pi \) (m3).

Thể tích lượng nước trong bể là:

\(V' = \frac{2}{3}V = \frac{2}{3}.4,725\pi \) = 10 (m3).

Xem thêm : SGK Toán 9 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Hãy nhắc lại công thức tính thể tích của hình lăng trụ đứng tam giác (hoặc hình lăng trụ đứng tứ giác) có diện tích đáy S và chiều cao h.

Xem lời giải >>
Bài 2 :

Một vòng bi bằng thép có hình dạng (phần thép giữa hai hình trụ) và kích thước như Hình 10.30. Tính thể tích của vòng bi đó.

Xem lời giải >>
Bài 3 :

Bạn Khôi cho một hòn đá cảnh vào một bể nuôi cá hình trụ có đường kính đáy bằng 20cm thì nước trong bể dâng lên 3cm. Hỏi hòn đá cảnh đó có thể tích bằng bao nhiêu?

Xem lời giải >>
Bài 4 :

Cho hai cái bình có cùng diện tích đáy: bình A có dạng hình hộp chữ nhật, hình B có dạng hình trụ. Ban đầu cả hai bình đều không chứa nước. Người ta đổ cùng một lượng nước vào hai bình thì thấy chiều cao của mực nước hai bình bằng nhau (Hình 8). Gọi S là diện tích đáy và h là chiều cao của mực nước mỗi bình.

a) Tính thể tích V của lượng nước trong bình A theo S và h. Từ đó, dự đoán thể tích của lượng nước trong bình B.

b) Gọi r là bán kính đáy hình B. Hãy tính thể tích nước trong bình B theo r và h.

Xem lời giải >>
Bài 5 :

Một bể nước hình trụ có bán kính R = 1,2 m (tính từ tâm bể đến mép ngoài), bề dày của thành bể là b = 0,05 m, chiều cao lòng bể là h = 1,6 m (Hình 12). Tính dung tích của bế nước (kết quả làm tròn đến hàng phần trăm).

Xem lời giải >>
Bài 6 :

Thể tích của hình trụ có bán kính đáy 6 cm, chiều cao 10 cm là

A. 360\(\pi \)cm3.        

B. 600\(\pi \)cm3.         

C. 720\(\pi \)cm3.         

D. 1200\(\pi \)cm3.

Xem lời giải >>
Bài 7 :

a) Nêu công thức tính thể tích hình lăng trụ đứng tứ giác ABCD.A’B’C’D’ (Hình 7) khi biết diện tích đáy và chiều cao.

b) Cũng như hình lăng trụ đứng tứ giác, mỗi hình trụ đều có thể  tích. Hãy dự đoán cách tính thể tích của hình trụ (Hình 8).

Xem lời giải >>
Bài 8 :

Một đường ống nối hai bể cá trong một thuỷ cung có dạng hình trụ (không có hai đáy), với độ dài (hay chiều cao) là 30 m và có dung tích là 1 800 000 lít (Hình 14). Hỏi đường kính đáy của đường ống đó là bao nhiêu mét làm tròn kết quả đến hàng phần trăm)?

Xem lời giải >>
Bài 9 :

Trong một thí nghiệm, bạn Mai thả một khối sắt hình trụ có chiều cao h = 6,5 cm, bán kính đáy r = 3,5 cm vào một bình chia độ đang chứa 500 ml nước. Sau khi khối sắt chìm hẳn xuống, bạn Mai thấy mực nước trong bình tăng lên vạch 750ml. Biết 1 ml = 1 cm3.

a) Dựa vào mực nước tăng lên trong bình, hãy tính thể tích của khối sắt.

b) Gọi S là diện tích đáy của khối sắt. So sánh tích S.h với kết quả ở câu a và rút ra nhận xét.

Xem lời giải >>
Bài 10 :

Tính thể tích nhựa cần dùng để sản xuất đoạn ống nhựa có kích thức như Hình 9.9.

Xem lời giải >>
Bài 11 :

Từ một tấm bìa hình chữ nhật với đồ dài hai cạnh là 20 cm, 15 cm có thể cuộn lại và dùng băng dính dán thành hình trụ A hoặc hình trụ B (không có nắp) như Hình 9.13.

a) Hãy so sánh thể tích của hai hình trụ A và B. Giải thích câu trả lời của em.

b) Nếu cắt tấm bìa thành hai phần X, Y bằng nhau và tạo thành hai hình trụ (không có nắp) cùng chiều cao 15 cm thì tổng thể tích của hai hình trụ này có lớn hơn thể tích của hình trụ B không? Vì sao?

Xem lời giải >>
Bài 12 :

Một cái thớt gỗ hình trụ có đường kính đáy 40 cm, dày 5 cm như Hình 9.14.

a) Tính thể tích gỗ cần dùng để làm thớt.

b) Khối lượng riêng của gỗ làm thớt là D = 500 kg/m3. Hỏi cái thớt nặng bao nhiêu gam (làm tròn đến hàng phần mười), biết khối lượng m (kg) của một vật có thể tích V (m3) là m = D.V?

Xem lời giải >>
Bài 13 :

Người ta xếp 6 lon nước ngọt vừa khít trong một thùng carton có dạng hình hộp chữ nhật như Hình 9.51. Mỗi lon nước ngọt có thể xem là một hình trụ với đường kính 6,4 cm và cao 12 cm.

a) Tính tổng thể tích của 6 lon nước ngọt.

b) Các lon nước ngọt chiếm khoảng bao nhiêu phần trăm không gian trong thùng (làm tròn kết quả đến hàng phần mười)?

Xem lời giải >>