Đề bài

Cho đường tròn (O), bán kính 5 cm và bốn điểm A, B, C, D thỏa mãn OA = 3 cm, OB = 4 cm, OC = 7 cm, OD = 5 cm. Hãy cho biết mỗi điểm A, B, C, D nằm trong, nằm trên hay nằm ngoài đường tròn (O).

Phương pháp giải

Đọc kĩ dữ liệu để vẽ hình rồi xác định vị trí các điểm.

Lời giải của GV Loigiaihay.com

Điểm A, B nằm trong đường tròn (O).

Điểm D nằm trên đường tròn (O).

Điểm C nằm ngoài đường tròn (O).

Xem thêm : SGK Toán 9 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Cho đường tròn $\left( {O;R} \right)$ và điểm $M$ bất kỳ, biết rằng $OM = R$. Chọn khẳng định đúng?

Xem lời giải >>
Bài 2 :

Trên mặt phẳng tọa độ $Oxy$, xác định vị trí tương đối của điểm $A\left( { - 1; - 1} \right)$ và đường tròn tâm là gốc tọa độ $O$, bán kính $R = 2\,$.

Xem lời giải >>
Bài 3 :

Cho đường tròn \(\left( {O;R} \right)\) và điểm \(M\) bất kỳ, biết rằng \(OM > R\). Chọn khẳng định đúng?

Xem lời giải >>
Bài 4 :

Trên mặt phẳng tọa độ \(Oxy\), xác định vị trí tương đối của điểm \(A\left( { - 3; - 4} \right)\) và đường tròn tâm là gốc tọa độ \(O\), bán kính \(R = 3\).

Xem lời giải >>
Bài 5 :

Trong mặt phẳng tọa độ Oxy, cho các điểm A(3;0), B(- 2;0), C(0;4). Vẽ hình và cho biết trong các điểm đã cho, điểm nào nằm trên, điểm nào nằm trong, điểm nào nằm ngoài đường tròn (O; 3)?

Xem lời giải >>
Bài 6 :

Trong mặt phẳng tọa độ Oxy, cho các điểm M (0 ; 2), N (0; -3) và P(2; -1). Vẽ hình và cho biết trong các điểm đã cho, điểm nào nằm trên, điểm nào nằm trong, điểm nào nằm ngoài đường tròn \(\left( {O;\sqrt 5 } \right)\)? Vì sao?

Xem lời giải >>
Bài 7 :

Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Chứng minh rằng các điểm A, B, C thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.

Xem lời giải >>
Bài 8 :

Cho đường tròn (O; 4 cm) và hai điểm A, B. Biết rằng OA = \(\sqrt {15} \)cm và OB = 4 cm. Khi đó:

A. Điểm A nằm trong (O), điểm B nằm ngoài (O).

B. Điểm A nằm ngoài (O), điểm B nằm trên (O).

C. Điểm A nằm trên (O), điểm B nằm trong (O).

D. Điểm A nằm trong (O), điểm B nằm trên (O).

Xem lời giải >>
Bài 9 :

Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Xem lời giải >>
Bài 10 :

Cho hai đường tròn (O; 2 cm) và (A; 2 cm) cắt nhau tại C, D, điểm A nằm trên đường tròn tâm O (Hình 20).

a) Vẽ đường tròn (C; 2 cm)

b) Đường tròn (C; 2 cm) có đi qua hai điểm O và A không? Vì sao?

 

Xem lời giải >>
Bài 11 :

Trong các điểm sau, điểm nào nằm trên đường tròn (O; 2cm).

Xem lời giải >>
Bài 12 :

Cho đường tròn \(\left( {O;5cm} \right)\) hai điểm A, B. Biết rằng \(OA = \sqrt {26} \) và \(OB = \frac{{17}}{4}\). Khi đó:

Xem lời giải >>
Bài 13 :

Cho tam giác đều ABC cạnh bằng a, các đường cao là BM và CN. Gọi D là trung điểm của cạnh BC. Gọi G là giao điểm của BM và CN. Xác định vị trí tương đối của điểm G và điểm A với đường tròn đi qua bốn điểm B, N, M, C.

Xem lời giải >>
Bài 14 :

Cho đường tròn (O) có bán kính bằng 2,5cm và hai tia Ox, Oy vuông góc với nhau tại O. Trên tia Ox lấy điểm A sao cho \(OA = 3cm\); trên tia Oy lấy điểm B sao cho \(OB = 4cm\). Gọi M là trung điểm của đoạn AB. Chứng minh rằng điểm M nằm trên đường tròn (O).

Xem lời giải >>
Bài 15 :

Trên mặt phẳng tọa độ Oxy, cho hai điểm A(0; -3) và B(2; 0). Gọi C và D là các điểm lần lượt đối xứng với A và B qua O.

a) Xác định tọa độ của hai điểm C và D.

b) Xác định vị trí của các điểm A, B, C và D đối với đường tròn (O; 3).

Xem lời giải >>
Bài 16 :

Trên mặt phẳng tọa độ Oxy, cho điểm A(3; 1). Gọi B, C và D là các điểm đối xứng với A lần lượt qua trục hoành, qua gốc O và qua trục tung.

a) Xác định tọa độ của ba điểm B, C và D.

b) Có hay không một đường tròn đi qua bốn điểm A, B, C và D. Xác định tâm và bán kính của đường tròn đó, nếu có.

Xem lời giải >>
Bài 17 :

Cho đường tròn (O), đường kính AB và điểm M thuộc (O) (M không trùng với điểm nào trong hai điểm A và B). Trên (O) lấy điểm N nằm khác phía của M đối với đường thẳng AB sao cho \(AM = BN\). Chứng minh rằng O là trung điểm của đoạn MN.

Xem lời giải >>
Bài 18 :

Trong mặt phẳng tọa độ Oxy, cho đường tròn (O; \(\sqrt 5 \)), hai điểm \(A\left( { - \sqrt 3 ;1} \right)\) và B(-1; 2). Khi đó xảy ra:

A. Điểm A nằm trong (O), điểm B nằm ngoài (O).

B. Điểm A nằm trong (O), điểm B nằm trên (O).

C. Điểm A nằm trên (O), điểm B nằm trong (O).

D. Điểm A nằm ngoài (O), điểm B nằm trên (O).

Xem lời giải >>
Bài 19 :

Cho đường thẳng xy cắt đường tròn (O) tại hai điểm A và B (H.5.10). Khi đó, các điểm thuộc đường thẳng xy và nằm trong đường tròn (O) là:

A. Các điểm thuộc tia AB.

B. Các điểm thuộc tia By.

C. Các điểm thuộc đoạn AB.

D. Các điểm nằm giữa A và B.

Xem lời giải >>
Bài 20 :

Cho tam giác ABC có AB = AC = 13 cm, Bc = 10 cm và có BH, CK là hai đường cao. Chứng minh:

a) Bốn điểm B, C, H, K cùng nằm trên đường tròn (O;R).

b) Điểm A nằm ngoài đường tròn (O; R).

Xem lời giải >>
Bài 21 :

Trên mặt phẳng tọa độ Oxy, cho các điểm A(-1; -1), B(-1; -2), C\(\left( {\sqrt 2 ;\sqrt 2 } \right)\) và đường tròn tâm O bán kính 2cm. Khẳng định nào sau đây là sai?

A. Điểm A nằm trong đường tròn (O; 2).

B. Điểm B nằm trên đường tròn (O; 2).

C. Điểm C nằm trên đường tròn (O; 2).

D. Điểm B nằm ngoài đường tròn (O; 2).

Xem lời giải >>
Bài 22 :

Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H. Khẳng định nào sau đây là đúng?

A. Bốn điểm B, E, D, C cùng nằm trên một đường tròn.

B. Bốn điểm A, E, H, D cùng nằm trên một đường tròn.

C. \(DE < BC\).

D. Cả ba đáp án trên đều đúng.

Xem lời giải >>
Bài 23 :

Trong mặt phẳng tọa độ Oxy, cho các điểm M(0; 2), N (0; -3) và P(2; -1). Vẽ hình và cho biết trong các điểm đã cho, điểm nào nằm trên, điểm nào nằm trong, điểm nào nằm ngoài đường tròn (O; \(\sqrt 5 \))? Vì sao?

Xem lời giải >>
Bài 24 :

Cho tam giác ABC vuông tại A có \(AB = 3cm,AC = 4cm\). Chứng minh rằng các điểm A, B, C thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.

Xem lời giải >>
Bài 25 :

Cho đường tròn (O; 4cm) và hai điểm A, B. Biết \(OA = \sqrt {15} cm\) và \(OB = 4cm\). Khi đó:

A. Điểm A nằm trong (O), điểm B nằm ngoài (O).

B. Điểm A nằm ngoài (O), điểm B nằm trên (O).

C. Điểm A nằm trên (O), điểm B nằm trong (O).

D. Điểm A nằm trong (O), điểm B nằm trên (O).

Xem lời giải >>
Bài 26 : Cho đường tròn \(\left( {O;3\;{\rm{cm}}} \right)\) và hai điểm A,B thỏa mãn \(OA = 3\;{\rm{cm}},OB = 4\;{\rm{cm}}\). Khẳng định nào sau đây đúng?
Xem lời giải >>