Đề bài

Trên đường tròn (O;R) lấy 4 điểm A, B, M, N sao cho AB đi qua O và MN không đi qua O (Hình 9).

a) Tính độ dài đoạn thẳng AB theo R.

b) So sánh độ dài của MN và OM + ON. Từ đó, so sánh độ dài của MN và AB.

Phương pháp giải

Dựa vào khái niệm đường tròn để: Đường tròn tâm O bán kính R (R > 0) là hình gồm tất cả các điểm cách điểm O một khoảng bằng R để viết hệ thức AB theo R. Rồi so sánh.

Lời giải của GV Loigiaihay.com

a) AB = AO + OB = R + R = 2R.

b) Ta có OM + ON = 2R > MN

Suy ra MN < AB.

Xem thêm : SGK Toán 9 - Chân trời sáng tạo

Các bài tập cùng chuyên đề

Bài 1 :

Cho đường tròn $\left( O \right)$ đường kính $AB$ và dây $CD$ không đi qua tâm. Khẳng định nào sau đây là đúng?

Xem lời giải >>
Bài 2 :

Cho đường tròn $\left( O \right)$ có hai dây $AB,CD$ không đi qua tâm. Biết rằng khoảng cách từ tâm đến hai dây là bằng nhau. Kết luận nào sau đây là đúng?

Xem lời giải >>
Bài 3 :

“Trong một đường tròn, đường kính đi qua trung điểm một dây không đi qua tâm thì $ \ldots $với dây ấy”. Điền vào dấu $...$ cụm từ thích hợp.

Xem lời giải >>
Bài 4 :

Chọn khẳng định sai trong các khẳng định sau. Trong hai dây của một đường tròn

Xem lời giải >>
Bài 5 :

Cho đường tròn $\left( O \right)$ có bán kính $R = 5\,cm$. Khoảng cách từ tâm đến dây $AB$ là $3\,cm$. Tính độ dài dây $AB$.

Xem lời giải >>
Bài 6 :

Cho đường tròn $\left( {O;R} \right)$có hai dây $AB,CD$ bằng nhau và vuông góc với nhau tại $I$. Giả sử $IA = 2cm;IB = 4cm$ . Tổng khoảng cách từ tâm $O$ dây $AB,CD$ là

Xem lời giải >>
Bài 7 :

Cho đường tròn $\left( {O;R} \right)$có hai dây $AB,CD$ vuông góc với nhau ở $M$. Biết$AB = 16\,cm;\,CD = 12\,cm;\,MC = 2\,cm$. Khoảng cách từ tâm $O$ đến dây $AB$ là

Xem lời giải >>
Bài 8 :

Cho đường tròn $\left( {O;R} \right)$ có hai dây $AB,CD$ vuông góc với nhau ở $M$. Biết $AB = 14\,cm;\,CD = 12\,cm;\,MC = 2\,cm.$ Bán kính $R$ và khoảng cách từ tâm $O$ đến dây $CD$ lần lượt là

Xem lời giải >>
Bài 9 :

Cho nửa đường tròn $\left( O \right)$,  đường kính $AB$ và một dây $CD$. Kẻ $AE$ và $BF$ vuông góc với $CD$ lần lượt tại $E$ và $F$ . So sánh độ dài $CE$ và $DF$ .

Xem lời giải >>
Bài 10 :

Cho đường tròn $\left( O \right)$, đường kính $AB$. Kẻ hai dây $AC$ và $BD$ song song. So sánh độ dài $AC$ và $BD$ .

Xem lời giải >>
Bài 11 :

Cho đường tròn $\left( O \right),$ dây cung $AB$ và $CD$ với $CD < AB$. Giao điểm $K$ của các đường thẳng $AB$ và $CD$ nằm ngoài đường tròn. Vẽ đường tròn $\left( {O;OK} \right),$ đường tròn này cắt $KA$ và $KC$ lần lượt tại $M$ và $N$ . So sánh $KM$ và $KN.$

Xem lời giải >>
Bài 12 :

Cho đường tròn $\left( {O;10\,cm} \right).$ Dây $AB$ và $CD$ song song, có độ dài lần lượt là $16cm$ và $12\,cm$ .Tính khoảng cách giữa hai dây.

Xem lời giải >>
Bài 13 :

Cho tam giác $ABC$ nhọn và có các đường cao $BD,CE$.  So sánh $BC$ và $DE$ .

Xem lời giải >>
Bài 14 :

Cho đường tròn $\left( O \right)$ đường kính $AB = 14cm$, dây $CD$ có độ dài $12cm$ vuông góc với $AB$ tại $H$ nằm giữa $O$ và $B$. Độ dài $HA$ là

Xem lời giải >>
Bài 15 :

Phát biểu nào sau đây là sai:

Xem lời giải >>
Bài 16 :

Trong hình vẽ bên cho $OC \bot AB,AB = 12cm,OA = 10cm$. Độ dài $AC$ là:

Xem lời giải >>
Bài 17 :

Cho đường tròn $\left( {O;25cm} \right)$ và dây $AB$ bằng $40cm.$ Khi đó khoảng cách từ tâm $O$ đến dây $AB$ là

Xem lời giải >>
Bài 18 :

“Trong các dây của một đường tròn, đường kính là dây có độ dài…”. Cụm từ thích hợp điền vào chỗ trống là:

Xem lời giải >>
Bài 19 :

Cho đường tròn \(\left( O \right)\)có hai dây \(AB,CD\) không đi qua tâm. Biết rằng khoảng cách từ tâm \(O\) đến dây \(AB\) lớn hơn khoảng cách từ tâm \(O\) đến dây \(CD\).  Kết luận nào sau đây là đúng?

Xem lời giải >>
Bài 20 :

“Trong một đường tròn, đường kính vuông góc với dây thì …của dây ấy”. Điền vào dấu \(...\) cụm từ thích hợp.

Xem lời giải >>
Bài 21 :

Chọn khẳng định đúng trong các khẳng định sau. Trong hai dây của một đường tròn

Xem lời giải >>
Bài 22 :

Cho đường tròn \(\left( O \right)\) có bán kính \(R = 6,5\,cm\). Khoảng cách từ tâm đến dây \(AB\) là \(2,5\,cm\). Tính độ dài dây \(AB\).

Xem lời giải >>
Bài 23 :

Cho đường tròn \(\left( {O;R} \right)\) có hai dây \(AB,CD\) bằng nhau và vuông góc với nhau tại \(I\) . Giả sử \(IA = 6cm;IB = 3cm\) . Tổng khoảng cách từ tâm \(O\) dây \(AB,CD\) là

Xem lời giải >>
Bài 24 :

Cho đường tròn \(\left( {O;R} \right)\) có hai dây \(AB,CD\) vuông góc với nhau ở \(M\). Biết\(\,CD = 8\,cm;\,MC = 1\,cm\). Khoảng cách từ tâm \(O\) đến dây \(AB\) là

Xem lời giải >>
Bài 25 :

Cho đường tròn \(\left( {O;R} \right)\)có hai dây \(AB,CD\) vuông góc với nhau ở \(M\). Biết\(AB = 10\,cm;\,CD = 8\,cm;\,MC = 1\,cm\). Bán kính \(R\) và khoảng cách từ tâm \(O\) đến dây \(CD\) lần lượt là

Xem lời giải >>
Bài 26 :

Cho nửa đường tròn \(\left( O \right)\) ,  đường kính \(AB\) và một dây \(MN\) . Kẻ \(AE\) và \(BF\) vuông góc với \(MN\) lần lượt tại \(E\) và \(F\) . So sánh độ dài \(OE\) và \(OF\) .

Xem lời giải >>
Bài 27 :

Cho đường tròn \(\left( O \right)\) , đường kính \(AB\) . Lấy điểm \(C\) là trung điểm đoạn \(OB.\) Kẻ dây \(MN\) qua \(C\) và  dây \(AD//MN\). So sánh độ dài \(AD\) và \(MN\) .

Xem lời giải >>
Bài 28 :

Cho đường tròn \(\left( O \right),\) dây cung \(AB\) và \(CD\) với \(CD = AB\). Giao điểm \(K\) của các đường thẳng \(AB\) và \(CD\) nằm ngoài đường tròn. Vẽ đường tròn \(\left( {O;OK} \right),\) đường tròn này cắt \(KA\) và \(KC\) lần lượt tại \(M\) và \(N\) . So sánh KM  và KN.

Xem lời giải >>
Bài 29 :

Cho đường tròn \(\left( {O;8\,cm} \right).\) Dây \(AB\) và \(CD\) song song, có độ dài lần lượt là \(14cm\) và \(10\,cm\) .Tính khoảng cách giữa hai dây.

Xem lời giải >>
Bài 30 :

Cho hình vuông \(ABCD.\) Gọi \(M,N\) lần lượt là trung điểm của \(AB,BC\) . Gọi \(E\) là giao điểm của \(CM\) và \(DN\) .  So sánh \(AE\) và \(DM.\)

Xem lời giải >>