Hoàn thành bảng sau vào vở.
Từ đó, nhận xét gì về căn bậc hai số học của bình phương của một số?
Đưa số vào trong căn rồi bình phương.
Căn bậc hai số học của bình phương của một số là 1 số không âm.
Các bài tập cùng chuyên đề
Rút gọn biểu thức $A = \sqrt {36{a^2}} + 3a$ với $a > 0$.
Rút gọn biểu thức
$\sqrt {{a^2} + 8a + 16} + \sqrt {{a^2} - 8a + 16} $ với $ - 4 \le a \le 4$ ta được
Nghiệm của phương trình \(\sqrt {{x^2} + 6x + 9} = 4 - x\) là
Rút gọn biểu thức $\dfrac{{\sqrt {{x^2} - 6x + 9} }}{{x - 3}}$ với $x < 3$ ta được
Tìm giá trị nhỏ nhất của biểu thức \(A = \sqrt {{m^2} + 2m + 1} + \sqrt {{m^2} - 8m + 16} \).
Rút gọn biểu thức \(A = \sqrt {144{a^2}} - 9a\) với \(a > 0\).
Rút gọn biểu thức \(\sqrt {4{a^2} + 12a + 9} + \sqrt {4{a^2} - 12a + 9} \) với \( - \dfrac{3}{2} \le a \le \dfrac{3}{2}\) ta được:
Số nghiệm của phương trình \(\sqrt {4{x^2} + 4x + 1} = 3 - 4x\) là:
Rút gọn biểu thức \(\dfrac{{\sqrt {{x^2} + 10x + 25} }}{{ - 5 - x}}\) với \(x < - 5\) ta được:
Tìm giá trị nhỏ nhất của biểu thức \(B = \sqrt {4{a^2} - 4a + 1} + \sqrt {4{a^2} - 12a + 9} \).
Rút gọn \(A = \dfrac{{\sqrt {x - 1 - 2\sqrt {x - 2} } }}{{\sqrt {x - 2} - 1}}\) với \(x > 3\)
Rút gọn biểu thức sau \(\sqrt {{{\left( {a - b} \right)}^2}} - 3\sqrt {{a^2}} + 2\sqrt {{b^2}} \) với \(a < 0 < b\)
a) Rút gọn biểu thức \(x\sqrt {{x^6}} \left( {x < 0} \right).\)
b) Rút gọn và tính giá trị của biểu thức \(x + \sqrt {4{x^2} - 4x + 1} \) tại \(x = - 2,5.\)
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} ;\)
b) \(3\sqrt {{x^2}} - x + 1\left( {x < 0} \right);\)
c) \(\sqrt {{x^2} - 4x + 4} \left( {x < 2} \right).\)
Tìm x, biết:
a) x2 = 121
b) 4x2 = 9
c) x2 = 10
Tính
a) \(\sqrt {{{\left( { - 0,4} \right)}^2}} \)
b) \( - \sqrt {{{\left( { - \frac{4}{9}} \right)}^2}} \)
c) \( - 2\sqrt {{3^2}} + {\left( { - \sqrt 6 } \right)^2}\)
Rút gọn các biểu thức sau:
a) \(\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} \)
b) \(\sqrt {{a^2}} + \sqrt {{{( - 3a)}^2}} \) với a > 0.
Tìm chỗ sai trong phép chứng minh “voi con nặng bằng voi mẹ” sau đây:
\(\begin{array}{l}{M^2} - 2Mm + {m^2} = {m^2} - 2mM + {M^2}\\{(M - m)^2} = {(m - M)^2}\\\sqrt {{{(M - m)}^2}} = \sqrt {{{(m - M)}^2}} \\M - m = m - M\\2M = 2m\\M = m(!)\end{array}\)
Biết rằng 1 < a < 5, rút gọn biểu thức
A = \(\sqrt {{{\left( {a - 1} \right)}^2}} + \sqrt {{{\left( {a - 5} \right)}^2}} \).
Tìm số thích hợp cho “?”:
a. \(\sqrt {7_{}^2} = ?\);
b. \(\sqrt {\left( { - 9} \right)_{}^2} = ?\);
c. \(\sqrt {a_{}^2} = ?\) với a là một số cho trước.
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a. \(\sqrt {x_{}^2 + 6x + 9} \) với \(x < - 3\);
b. \(\sqrt {y_{}^4 + 2y_{}^2 + 1} \).
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a. \(\sqrt {\left( {5 - x} \right)_{}^2} \) với \(x \ge 5\);
b. \(\sqrt {\left( {x - 3} \right)_{}^4} \);
c. \(\sqrt {\left( {y + 1} \right)_{}^6} \) với \(y < - 1\).
Rút gọn biểu thức:
a. \(A = \sqrt {40_{}^2 - 24_{}^2} \);
b. \(B = \left( {\sqrt {12} + 2\sqrt 3 - \sqrt {27} } \right).\sqrt 3 \);
c. \(C = \frac{{\sqrt {63_{}^3 + 1} }}{{\sqrt {63_{}^2 - 62} }}\);
d. \(D = \sqrt {60} - 5\sqrt {\frac{3}{5}} - 3\sqrt {\frac{5}{3}} \).
Hãy chép lại và hoàn thành Bảng 3.1. Em có nhận xét gì về giá trị của \(\sqrt {{{\left( {2x - 1} \right)}^2}} \) và \(\left| {2x - 1} \right|\)?
Rút gọn:
a) \(\sqrt {{x^8}} \);
b) \(2\sqrt {{{\left( { - y + 5} \right)}^2}} \) với \(y \ge 5\);
c) \( - 3\sqrt {{z^{10}}} \) với \(z < 0\).
Rút gọn rồi tính giá trị biểu thức \(\sqrt {25{{\left( {4{x^2} - 4x + 1} \right)}^2}} \) tại \(x = \sqrt 3 \).
Áp dụng quy tắc về căn thức bậc hai của một bình phương, hãy rút gọn biểu thức:
a) \(\sqrt {25 - 10 + {x^2}} \) với \(x \le 5.\)
b) \(\sqrt {{{\left( {9 + 12x + 4{x^2}} \right)}^2}} \)
c) \(\sqrt {{{\left( {3x + 1} \right)}^6}} \) với \(x \ge \frac{{ - 1}}{3}\)
d) \(\sqrt {\frac{{49{x^2}{{\left( {x + 5} \right)}^2}}}{{16}}} \) với \(x \ge 0\)
Tìm x, biết:
a) \(\frac{1}{2}\sqrt x - \frac{3}{2}\sqrt {9x} + 24\sqrt {\frac{x}{{64}}} = - 17\) với \(x \ge 0\)
b) \(\sqrt {\frac{x}{5}} = 4\) với \(x \ge 0\)
c) \(\sqrt {25{x^2}} = 10\)
d) \(\sqrt {{{\left( {2x - 1} \right)}^2}} = 3\)
e) \(2 - \sqrt[3]{{5 - x}} = 0\)
Rút gọn biểu thức \(\sqrt {{{\left( { - a} \right)}^2}} - \sqrt {9{a^2}} \) với a < 0, ta có kết quả
A. – 4a
B. 2a
C. 4a
D. – 2a