Cho phương trình \(\frac{x}{{x - 2}} = \frac{1}{{x + 1}} + 1\).
a) Tìm điều kiện xác định của phương trình đã cho.
b) Xét các phép biến đổi như sau:
\(\begin{array}{l}\frac{x}{{x - 2}} = \frac{1}{{x + 1}} + 1\\\frac{x}{{x - 2}} = \frac{{x + 2}}{{x + 1}}\end{array}\)
\(\frac{{x(x + 1)}}{{(x - 2)(x + 1)}} = \frac{{(x + 2)(x - 2)}}{{(x + 1)(x - 2)}}\)
\({x^2} + x = {x^2} - 4\)
\(x = - 4\)
Hãy giải thích cách thực hiện mỗi phép biến đổi trên.
c) \(x = - 4\) có là nghiệm của phương trình đã cho không?
- Đối với phương trình chứa ẩn ở mẫu, để tìm điều kiện xác định của phương trình ta tìm điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0.
- Quy đồng mẫu thức hai vế của phương trình.
- Thay \(x = - 4\) vào phương trình để kiểm tra có phải là nghiệm hay không.
a) Điều kiện xác định: \(x - 2 \ne 0\) và \(x + 1 \ne 0\)
khi \(x \ne 2\) và \(x \ne - 1\).
Vậy điều kiện xác định của phương trình là \(x \ne 2\) và \(x \ne - 1\).
b) \(\frac{x}{{x - 2}} = \frac{1}{{x + 1}} + 1\)
Quy đồng vế phải với mẫu thức chung là \(x + 1\): \(\frac{x}{{x - 2}} = \frac{{x + 2}}{{x + 1}}\)
Quy đồng cả hai vế với mẫu thức chung là \((x - 2)(x + 1)\): \(\frac{{x(x + 1)}}{{(x - 2)(x + 1)}} = \frac{{(x + 2)(x - 2)}}{{(x + 1)(x - 2)}}\)
Hai phân thức bằng nhau có cùng mẫu thì tử bằng nhau.\({x^2} + x = {x^2} - 4\)
Giải phương trình ta được \(x = - 4\)
c) Thay \(x = - 4\) vào phương trình, ta được:
\(\begin{array}{l}\frac{{ - 4}}{{( - 4) - 2}} = \frac{1}{{( - 4) + 1}} + 1\\\frac{{ - 4}}{{ - 6}} = \frac{1}{{ - 3}} + 1\\\frac{2}{3} = \frac{2}{3}\\\frac{2}{3} - \frac{2}{3} = 0\\0 = 0\end{array}\)
Điều này luôn đúng nên \(x = - 4\) là nghiệm của phương trình đã cho.
Vậy \(x = - 4\) là nghiệm của phương trình đã cho.
Các bài tập cùng chuyên đề
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Trong các khẳng định sau, số khẳng định đúng là:
a) Tập nghiệm của phương trình \(\dfrac{{{x^2} + 3x}}{x} = 0\) là \(\left\{ {0; - 3} \right\}\).
b) Tập nghiệm của phương trình \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\) là \(\left\{ { - 2} \right\}\).
c) Tập nghiệm của phương trình \(\dfrac{{x - 8}}{{x - 7}} = \dfrac{1}{{7 - x}} + 8\) là \(\left\{ 0 \right\}\).
Số nghiệm của phương trình \(\dfrac{{x - 5}}{{x - 1}} + \dfrac{2}{{x - 3}} = 1\) là
Phương trình \(\dfrac{{3x - 5}}{{x - 1}} - \dfrac{{2x - 5}}{{x - 2}} = 1\) có số nghiệm là
Cho phương trình $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$ . Bạn Long giải phương trình như sau:
Bước 1: ĐKXĐ $x \ne 1;\,x \ne 2$
Bước 2: $\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}$
\(\dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{{ -1}}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Bước 3: Suy ra
\(x - 2 - 7x + 7 = - 1 \\- 6x = - 6 \\x = 1\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\).
Chọn câu đúng.
Cho hai biểu thức : \(A = 1 + \dfrac{1}{{2 + x}}\) và \(B = \dfrac{{12}}{{{x^3} + 8}}\) . Tìm $x$ sao cho \(A = B\) .
Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\). Khẳng định nào sau đây là đúng.
Biết \({x_0}\) là nghiệm nhỏ nhất của phương trình
\(\dfrac{1}{{{x^2} + 4x + 3}} + \dfrac{1}{{{x^2} + 8x + 15}} + \dfrac{1}{{{x^2} + 12x + 35}} + \dfrac{1}{{{x^2} + 16x + 63}} = \dfrac{1}{5}.\) Chọn khẳng định đúng.
Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Phương trình \(\dfrac{x}{{x - 5}} - \dfrac{3}{{x - 2}} = 1\) có nghiệm là
Số nghiệm của phương trình \(\dfrac{{x - 1}}{{x + 2}} - \dfrac{x}{{x - 2}} = \dfrac{{5x - 2}}{{4 - {x^2}}}\) là
Tập nghiệm của phương trình \(\dfrac{{x + 2}}{{x - 1}} - 2 = x\) là
Phương trình \(\dfrac{{x - 1}}{2} + \dfrac{{x - 1}}{3} - \dfrac{{x - 1}}{6} = 2\) có tập nghiệm là
Tập nghiệm của phương trình \(\dfrac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \dfrac{5}{{{x^2} - x + 1}} - \dfrac{1}{{x + 1}}\) là
Phương trình \(\dfrac{3}{{1 - 4x}} = \dfrac{2}{{4x + 1}} - \dfrac{{8 + 6x}}{{16{x^2} - 1}}\) có nghiệm là
Số nghiệm của phương trình \(\dfrac{3}{{5x - 1}} + \dfrac{2}{{3 - 5x}} = \dfrac{4}{{\left( {1 - 5x} \right)\left( {5x - 3} \right)}}\) là
Cho hai phương trình \(\dfrac{{{x^2} + 2x}}{x} = 0\,\left( 1 \right)\) và \(\dfrac{{{x^2} - 4}}{{x - 2}} = 0\,\left( 2 \right)\). Chọn kết luận đúng:
Phương trình \(\dfrac{2}{{x + 1}} + \dfrac{x}{{3x + 3}} = 1\) có số nghiệm là
Cho phương trình \(\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\). Bạn Long giải phương trình như sau:
Bước 1: ĐKXD \(x \ne 1;\,x \ne 2\)
Bước 2: \(\dfrac{1}{{x - 1}} - \dfrac{7}{{x - 2}} = \dfrac{1}{{\left( {x - 1} \right)\left( {2 - x} \right)}}\)
\( \dfrac{{x - 2}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} - \dfrac{{7\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \dfrac{1}{{\left( {x - 1} \right)\left( {x - 2} \right)}}\)
Bước 3: Suy ra \(x - 2 - 7x + 7 = 1\)
\( - 6x = - 4 \\x = \dfrac{2}{3}\left( {TM} \right)\)
Vậy tập nghiệm của phương trình là \(S = \left\{ {\dfrac{2}{3}} \right\}\).
Chọn câu đúng.
Cho hai biểu thức: \(A = 1 - \dfrac{1}{{2 - x}}\) và \(B = \dfrac{{12}}{{{x^3} - 8}}\). Giá trị của \(x\) để \(A = B\) là:
Cho phương trình \(\left( 1 \right)\): \(\dfrac{1}{x} + \dfrac{2}{{x - 2}} = 0\) và phương trình \(\left( 2 \right)\): \(\dfrac{{x - 1}}{{{x^2} - x}} + \dfrac{{2x - 2}}{{{x^2} - 3x + 2}} = 0\). Khẳng định nào sau đây là sai.
Cho phương trình: \(\dfrac{1}{{{x^2} + 3x + 2}} + \dfrac{1}{{{x^2} + 5x + 6}} + \dfrac{1}{{{x^2} + 7x + 12}} + \dfrac{1}{{{x^2} + 9x + 20}} = \dfrac{1}{3}\).
Tổng bình phương các nghiệm của phương trình trên là:
Xét phương trình \(\frac{{x + 3}}{x} = \frac{{x + 9}}{{x - 3}}.\left( 2 \right)\)
Hãy thực hiện các yêu cầu sau để giải phương trình (2):
a) Tìm điều kiện xác định của phương trình (2);
b) Quy đồng mẫu hai vế của phương trình (2), rồi khử mẫu;
c) Giải phương trình vừa tìm được;
d) Kết luận nghiệm của phương trình (2).
Giải phương trình \(\frac{1}{{x - 1}} - \frac{{4x}}{{{x^3} - 1}} = \frac{x}{{{x^2} + x + 1}}.\)
Giải các phương trình sau:
a) \(\frac{2}{{2x + 1}} + \frac{1}{{x + 1}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}};\)
b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{{3x}}{{{x^3} + 1}}.\)
Hai người cùng làm chung một công việc thì xong trong 8 giờ. Hai người cùng làm được 4 giờ thì người thứ nhất bị điều đi làm công việc khác. Người thứ hai tiếp tục làm việc trong 12 giờ nữa thì xong công việc. Gọi x là thời gian người thứ nhất làm một mình xong công việc (đơn vị tính là giờ, \(x > 0\)).
a) Hãy biểu thị theo x:
- Khối lượng công việc mà người thứ nhất làm được trong 1 giờ;
- Khối lượng công việc mà người thứ hai làm được trong 1 giờ;
b) Hãy lập phương trình theo x và giải phương trình đó. Sau đó cho biết, nếu làm một mình thì mỗi người phải làm trong bao lâu mới xong công việc đó.
Để loại bỏ x% một loại tảo độc khỏi một hồ nước, người ta ước tính chi phí cần bỏ ra là
\(C\left( x \right) = \frac{{50x}}{{100 - x}}\) (triệu đồng), với \(0 \le x < 100.\)
Nếu bỏ ra 450 triệu đồng, người ta có thể lọai bỏ được bao nhiêu phần trăm loại tảo độc đó?
Giải các phương trình sau:
a) \(\frac{1}{{x + 2}} - \frac{2}{{{x^2} - 2x + 4}} = \frac{{x - 4}}{{{x^3} + 8}};\)
b) \(\frac{{2x}}{{x - 4}} + \frac{3}{{x + 4}} = \frac{{x - 12}}{{{x^2} - 16}}.\)
Giải các phương trình sau:
a) \(\frac{x}{{x - 5}} - \frac{2}{{x + 5}} = \frac{{{x^2}}}{{{x^2} - 25}};\)
b) \(\frac{1}{{x - 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}.\)
Giải các phương trình sau:
a) \(\frac{2}{{x + 1}} - \frac{{2x}}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}\);
b) \(\frac{{x + 1}}{{2x - 1}} - \frac{2}{{2x + 1}} = \frac{{2{x^2}}}{{4{x^2} - 1}}\).