Đề bài

Giải các hệ phương trình sau:

a) \(\left\{ \begin{array}{l}3x - 2y = 4\\2x + y = 5\end{array} \right.\);

b) \(\left\{ \begin{array}{l}x + y = 5\\3x + \sqrt[3]{3}y = 6\end{array} \right.\);

c) \(\left\{ \begin{array}{l}3x + 2y = 0\\2x - 3y = 0\end{array} \right.\);

d) \(\left\{ \begin{array}{l}x\sqrt 5  - \left( {1 + \sqrt 3 } \right)y = 1\\\left( {1 - \sqrt 3 } \right)x + y\sqrt 5  = 1\end{array} \right.\).

Phương pháp giải

Cách 1: Sử dụng câu lệnh Solve ({<phương trình thứ nhất>, (<phương trình thứ hai>}, {<biến số thứ nhất>, (<biến số thứ hai>}) hoặc Solutions ({<phương trình thứ nhất>, (<phương trình thứ hai>}, {<biến số thứ nhất>, (<biến số thứ hai>}) trên ô lệnh của cửa sổ CAS kết quả sẽ hiển thị ngay bên dưới.

Cách 2: Sử dụng câu lệnh Intersect ({<phương trình thứ nhất>, (<phương trình thứ hai>}) trên ô lệnh của cửa sổ CAS để tìm tọa độ giao điểm của hai đường thẳng có phương trình tương ứng.

Lời giải của GV Loigiaihay.com

a)

Vậy hệ phương trình \(\left\{ \begin{array}{l}3x - 2y = 4\\2x + y = 5\end{array} \right.\) có nghiệm \(x = 2;y = 1\).

b)

Vậy hệ phương trình \(\left\{ \begin{array}{l}x + y = 5\\3x + \sqrt[3]{3}y = 6\end{array} \right.\) có nghiệm \(x = \frac{{ - 3{{\sqrt[3]{3}}^2} - 9\sqrt[3]{3} + 13}}{8};y = \frac{{3{{\sqrt[3]{3}}^2} + 9\sqrt[3]{3} + 27}}{8}\).

c)

Vậy hệ phương trình \(\left\{ \begin{array}{l}3x + 2y = 0\\2x - 3y = 0\end{array} \right.\) có nghiệm \(x = 0;y = 0\).

d)

Vậy hệ phương trình \(\left\{ \begin{array}{l}x\sqrt 5  - \left( {1 + \sqrt 3 } \right)y = 1\\\left( {1 - \sqrt 3 } \right)x + y\sqrt 5  = 1\end{array} \right.\) có nghiệm \(x = \frac{{\sqrt 5 }}{3} + \frac{{\sqrt 3 }}{3} + \frac{1}{3};y = \frac{{\sqrt 5 }}{3} + \frac{{\sqrt 3 }}{3} - \frac{1}{3}\).

Xem thêm : SGK Toán 9 - Kết nối tri thức

Các bài tập cùng chuyên đề

Bài 1 :

Giải các phương trình sau:

a) \({x^2} - 4x + 10 = 0\);

b) \(x + \frac{9}{{x - 1}} = 7\);

c) \({x^2} - 2\left( {\sqrt 3  - 1} \right)x - 2\sqrt 3  = 0\);

d) \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{4}{{{x^2} - 1}}\).

Xem lời giải >>
Bài 2 :

Cho đường thẳng \(\left( d \right):y = 2x + \sqrt 3 \) và parabol \(\left( P \right):y = {x^2}\).

a) Vẽ đường thẳng (d) và parabol (P) trên cùng một mặt phẳng tọa độ.

b) Tìm tọa độ giao điểm của (d) và (P).

Xem lời giải >>
Bài 3 :

Vẽ đồ thị các hàm số sau:

a) y = –x2;   

b) y = x2;     

c) y = \(\frac{1}{5}\)x2;         

d) y = –0,2x2.

Xem lời giải >>
Bài 4 :

Vẽ đồ thị các hàm số sau:

a) y = 2x2;             

b) y = –4x2;           

c) y = = 5x2;          

d) y = –2,5x2;        

e) y = \(\frac{7}{2}\)x2;            

g) y = \( - \frac{8}{5}\)x2.

Xem lời giải >>
Bài 5 :

Dùng phần mềm Geogebra vẽ đồ thị của các hàm số sau và tìm toạ độ giao điểm (nếu có) của hai đồ thị:

1. \(y = \frac{1}{3}{{\rm{x}}^2}\) và \(y =  - x + \frac{1}{2}\)

2. \(y = \sqrt 2 {x^2}\) và \(y = 2x - \sqrt 3 \)

3. \(y =  - 1,2{x^2}\) và \(y = 0,6x + 0,075\)

Xem lời giải >>
Bài 6 :

Chọn một điểm khác nằm trên parabol để lập công thức của hàm số tương ứng và so sánh với kết quả tìm được ở Bước 2.

Xem lời giải >>