Chứng tỏ rằng nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm là \({x_1}\) và \({x_2}\) thì đa thức \(a{x^2} + bx + c\) được phân tích được thành nhân tử sau: \(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\).
Áp dụng: Phân tích các đa thức sau thành nhân tử:
a) \({x^2} + 11x + 18\);
b) \(3{x^2} + 5x - 2\).
Chứng minh:
+ Biến đổi \(a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = a{x^2} - ax\left( {{x_1} + {x_2}} \right) + a{x_1}{x_2}\)
+ Viết định lí Viète để tính tổng và tích các nghiệm: \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\)
+ Thay \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\) vào đa thức \(a{x^2} - ax\left( {{x_1} + {x_2}} \right) + a{x_1}{x_2}\) ta được điều phải chứng minh.
a, b) + Tìm nghiệm của phương trình \(a{x^2} + bx + c = 0\)
+ Phân tích đa thức dưới dạng: \(a{x^2} + bx + c = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\)
Ta có: \(a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) = a{x^2} - ax\left( {{x_1} + {x_2}} \right) + a{x_1}{x_2}\)
Vì phương trình \(a{x^2} + bx + c = 0\) có hai nghiệm \({x_1}\) và \({x_2}\) nên theo định lí Viète ta có: \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\). Thay vào biểu thức \(a{x^2} - ax\left( {{x_1} + {x_2}} \right) + a{x_1}{x_2}\) ta có:
\(a{x^2} - ax.\frac{{ - b}}{a} + a.\frac{c}{a} = a{x^2} + bx + c\)
a) Giải phương trình \({x^2} + 11x + 18 = 0\):
Ta có: \(\Delta = {11^2} - 4.1.18 = 49 > 0\) nên phương trình có hai nghiệm \({x_1} = \frac{{ - 11 + \sqrt {49} }}{2} = - 2;{x_2} = \frac{{ - 11 - \sqrt {49} }}{2} = - 9\)
Do đó, \({x^2} + 11x + 18 = \left( {x + 2} \right)\left( {x + 9} \right)\).
b) Giải phương trình \(3{x^2} + 5x - 2 = 0\):
Ta có: \(\Delta = {5^2} - 4.3.\left( { - 2} \right) = 49 > 0\) nên phương trình có hai nghiệm \({x_1} = \frac{{ - 5 + \sqrt {49} }}{6} = \frac{1}{3};{x_2} = \frac{{ - 5 - \sqrt {49} }}{6} = - 2\)
Do đó, \(3{x^2} + 5x - 2 = 3\left( {x + 2} \right)\left( {x - \frac{1}{3}} \right)\).
Các bài tập cùng chuyên đề
Chọn phát biểu đúng. Phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ có hai nghiệm ${x_1};{x_2}$. Khi đó
Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 5x + 2 = 0$. Không giải phương trình, tính giá trị của biểu thức $A = x_1^2 + x_2^2$
Gọi ${x_1};{x_2}$ là nghiệm của phương trình $ - 2{x^2} - 6x - 1 = 0$. Không giải phương trình, tính giá trị của biểu thức $N = \dfrac{1}{{{x_1} + 3}} + \dfrac{1}{{{x_2} + 3}}$
Gọi ${x_1};{x_2}$ là nghiệm của phương trình ${x^2} - 20x - 17 = 0$. Không giải phương trình, tính giá trị của biểu thức $C = x_1^3 + x_2^3$
Gọi \({x_1};{x_2}\) là nghiệm của phương trình \(2{x^2} - 11x + 3 = 0\). Không giải phương trình, tính giá trị của biểu thức \(A = x_1^2 + x_2^2\)
Gọi \({x_1};{x_2}\) là nghiệm của phương trình \( - {x^2} - 4x + 6 = 0\). Không giải phương trình, tính giá trị của biểu thức \(N = \dfrac{1}{{{x_1} + 2}} + \dfrac{1}{{{x_2} + 2}}\)
Gọi \({x_1};{x_2}\) là nghiệm của phương trình \(2{x^2} - 18x + 15 = 0\). Không giải phương trình, tính giá trị của biểu thức \(C = x_1^3 + x_2^3\)
Gọi \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình \({x^2} - 3x + 2 = 0.\)
Tính tổng \(S = {x_1} + {x_2}\) và \(P = {x_1}{x_2}.\)
Cho phương trình \({x^2} - 4x - 3 = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức \(T = \dfrac{{x_1^2}}{{{x_2}}} + \dfrac{{x_2^2}}{{{x_1}}}\).
Biết phương trình \({x^2} - 19x + 7 = 0\) có hai nghiệm là \({x_1}\) và \({x_2},\) không giải phương trình, hãy tính giá trị biểu thức: \(P = {x_2}{\left( {2x_1^2 - 38{x_1} + {x_1}{x_2} - 3} \right)^2} \)\(+ {x_1}{\left( {2x_2^2 - 38{x_2} + {x_1}{x_2} - 3} \right)^2} + 120.\)
Cho parabol \(\left( P \right):y = - {x^2}\) và đường thẳng \(\left( d \right):y = x + m - 2.\) Tìm tất cả các giá trị của tham số \(m\) để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 < 3\).
Tìm \(m\) để phương trình \({x^2} - 2\left( {m + 1} \right)x + 4m = 0\) (\(x\) là ẩn, \(m\) là tham số) có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(x_1^3 - x_1^2 = x_2^3 - x_2^2\).
Từ kết quả HĐ1, hãy tính \({x_1} + {x_2}\) và \({x_1}{x_2}\).
Không giải phương trình, hãy tính biệt thức \(\Delta \) (hoặc \(\Delta \)’) để kiểm tra điều kiện có nghiệm, rồi tính tổng và tích các nghiệm của các phương tình bậc hai sau:
a) \(2{x^2} - 7x + 3 = 0\);
b) \(25{x^2} - 20x + 4 = 0\);
c) \(2\sqrt 2 {x^2} - 4 = 0\).
Tròn nói: Không cần giải, tớ biết ngay tổng và tích hai nghiệm của phương trình \({x^2} - x + 1 = 0\) đều bằng 1. Ý kiến của em thế nào?
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:
a) \({x^2} - 12x + 8 = 0\);
b) \(2{x^2} + 11x - 5 = 0\);
c) \(3{x^2} - 10 = 0\);
d) \({x^2} - x + 3 = 0\).
Phương trình bậc hai có hai nghiệm \({x_1} = 13\) và \({x_2} = 25\) là
A. \({x^2} - 13x + 25 = 0\).
B. \({x^2} - 25x + 13 = 0\).
C. \({x^2} - 38x + 325 = 0\).
D. \({x^2} + 38x + 325 = 0\).
Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình \({x^2} - 5x + 6 = 0\). Khi đó, giá trị của biểu thức \(A = x_1^2 + x_2^2\) là
A. 13.
B. 19.
C. 25.
D. 5.
Cho phương trình \({x^2} - 11x + 30 = 0\). Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình. Không giải phương trình, hãy tính:
a) \(x_1^2 + x_2^2\);
b) \(x_1^3 + x_2^3\).
Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình bậc hai \({x^2} - 5x + 3 = 0\). Không giải phương trình, hãy tính:
a) \(x_1^2 + x_2^2\);
b) \({\left( {{x_1} - {x_2}} \right)^2}\).
Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có hai nghiệm \({x_1},{x_2}\).
Tính \({x_1} + {x_2}\) và \({x_1}.{x_2}\).
Tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:
a) \({x^2} - 2\sqrt 7 x + 7 = 0\)
b) \(15{x^2} - 2x - 7 = 0\)
c) \(35{x^2} - 12x + 2 = 0\)
Cho phương trình \({x^2} + 4x - 21 = 0\). Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức:
a) \(\frac{2}{{{x_1}}} + \frac{2}{{{x_2}}}\)
b) \({x_1}^2 + {x_2}^2 - {x_1}.{x_2}\)
Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:
a) \(3{x^2} - 9x + 5 = 0\)
b) \(25{x^2} - 20x + 4 = 0\)
c) \(5{x^2} - 9x + 15 = 0\)
d) \(5{x^2} - 2\sqrt 3 x - 3 = 0\)
Cho phương trình \({x^2} - 19x - 5 = 0\). Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức:
a) A = \({x_1}^2 + {x_2}^2\)
b) B = \(\frac{2}{{{x_1}}} + \frac{2}{{{x_2}}}\)
c) C = \(\frac{3}{{{x_1} + 2}} + \frac{3}{{{x_2} + 2}}\)
Gọi S và P lần lượt là tổng và tích của hai nghiệm của phương trình \({x^2} + 5x - 10 = 0\). Khi đó giá trị của S và P là
A. S = 5; P = 10.
B. S = - 5; P = 10.
C. S = -5; P = -10.
D. S = 5; P = -10.
Cho phương trình \({x^2} + 7x - 15 = 0\). Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình. Khi đó giá trị của biểu thức \({x_1}^2 + {x_2}^2 - {x_1}{x_2}\)là
A. 79
B. 94
C. -94
D. -79
Cho phương trình \(2{x^2} - 7x + 6 = 0\). Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức:
A = \(\left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right) - {x_1}^2{x_2}^2\)
Xét phương trình \(a{x^2} + bx + c = 0(a \ne 0)\). Giả sử phương trình đó có 2 nghiệm là \({x_1},{x_2}.\) Tính \({x_1} + {x_2};{x_1}.{x_2}\) theo các hệ số \(a,b,c.\)
Cho phương trình \( - 4{x^2} + 9x + 1 = 0\).
a) Chứng minh phương trình có 2 nghiệm phân biệt \({x_1},{x_2}.\)
b) Tính \({x_1} + {x_2};{x_1}.{x_2}\).
c) Tính \({x_1}^2 + {x_2}^2\).