Đề bài

Giải bài toán ở tình huống mở đầu.

Tình huống mở đầu: Trong một khu vườn hình vuông có cạnh bằng 15m người ta làm một lối đi xung quanh vườn có bề rộng là x (m) (H.2.1). Để diện tích phần đất còn lại là \(169{m^2}\) thì bề rộng x của lối đi là bao nhiêu?

Phương pháp giải

Ta có phần đất còn lại là hình vuông và có diện tích \(169{m^2}\) tuy nhiên ta chưa biết độ dài cạnh, ta cần lập biểu thức biểu thị độ dài cạnh của phần đất còn lại.

Do lối đi có bề rộng là x nên cạnh của khu vườn hình vuông ban đầu giảm đi \(2x\left( m \right).\)

Nên phần đất còn lại là hình vuông có cạnh \(15 - 2x\left( m \right)\)

Từ đó ta lập được phương trình chứa ẩn x biểu thị diện tích của phần đất còn lại. Giải phương trình ta được kết quả cần tìm.

Lời giải của GV Loigiaihay.com

Do lối đi có bề rộng là x nên cạnh của khu vườn hình vuông ban đầu giảm đi \(2x\left( m \right).\)

Nên phần đất còn lại là hình vuông có cạnh \(15 - 2x\left( m \right)\) (điều kiện: \(15 - 2x > 0\) hay \(x < \frac{15}{2}\))

Diện tích phần đất còn lại là \(169{m^2}\) nên ta có phương trình \({\left( {15 - 2x} \right)^2} = 169\)

Cách 1. Ta giải phương trình \({\left( {15 - 2x} \right)^2} = 169\)

\(\begin{array}{l}{\left( {15 - 2x} \right)^2} = {13^2}\\TH1:15 - 2x = 13\\2x = 2\\x = 1\end{array}\)

\(TH2:15 - 2x =  - 13\) (vô lý vì cạnh của mảnh đất >0)

Vậy \(x = 1\)

Vậy bề rộng của lối đi là 1m.

Cách 2. Đưa phương trình \({\left( {15 - 2x} \right)^2} = 169\) về phương trình tích

Ta được:
\({\left( {15 - 2x} \right)^2} = 13^2\)

\({\left( {15 - 2x} \right)^2} - 13^2 =0\)

\((15-2x-13)(15-2x+13)=0\)

\((2-2x)(28-2x)=0\)

Ta giải hai phương trình sau:

\( 2 - 2x = 0\) suy ra \(x = 1\) (thỏa mãn)

\(28 - 2x = 0\) suy ra \(x = 14\) (không thỏa mãn điều kiện)

Vậy \(x = 1\)

Vậy bề rộng của lối đi là 1m.

Xem thêm : SGK Toán 9 - Kết nối tri thức

Các bài tập cùng chuyên đề

Bài 1 :

Chọn khẳng định đúng.

Xem lời giải >>
Bài 2 :

Tích các nghiệm của phương trình \({x^3} + 4{x^2} + x - 6 = 0\) là

Xem lời giải >>
Bài 3 :

Nghiệm lớn nhất của phương trình \(\left( {{x^2} - 1} \right)\left( {2x - 1} \right) = \left( {{x^2} - 1} \right)\left( {x + 3} \right)\) là

Xem lời giải >>
Bài 4 :

Nghiệm nhỏ nhất của phương trình \({\left( {2x + 1} \right)^2} = {\left( {x - 1} \right)^2}\) là

Xem lời giải >>
Bài 5 :

Tập nghiệm của phương trình \(\left( {{x^2} + x} \right)\left( {{x^2} + x + 1} \right) = 6\) là

Xem lời giải >>
Bài 6 :

Tìm m để phương trình \(\left( {2m - 5} \right)x - 2{m^2} + 8 = 43\) có nghiệm \(x =  - 7\).

Xem lời giải >>
Bài 7 :

Tập nghiệm của phương trình

\({\left( {5{x^2} - 2x + 10} \right)^2} = {\left( {3{x^2} + 10x - 8} \right)^2}\) là:  

Xem lời giải >>
Bài 8 :

Biết rằng phương trình \({\left( {{x^2} - 1} \right)^2} = 4x + 1\) có nghiệm lớn nhất là \({x_0}\) . Chọn hẳng định đúng.

Xem lời giải >>
Bài 9 :

Cho phương trình $\left( 1 \right):$ \(x\left( {{x^2} - 4x + 5} \right) = 0\) và phương trình \(\left( 2 \right):\) \(\left( {{x^2} - 1} \right)\left( {{x^2} + 4x + 5} \right) = 0\).

Chọn khẳng định đúng.

Xem lời giải >>
Bài 10 :

Phương trình \({x^2} + x = 0\) có số nghiệm là

Xem lời giải >>
Bài 11 :

Phương trình \(2x + k = x - 1\) nhận \(x = 2\) là nghiệm khi

Xem lời giải >>
Bài 12 :

Giải phương trình: \(2x\left( {x - 5} \right) + 21 = x\left( {2x + 1} \right) - 12\)  ta được nghiệm \({x_0}.\) Chọn câu đúng.

Xem lời giải >>
Bài 13 :

Số nghiệm của phương trình \(\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right) = \left( {x + 2} \right){x^2}\) là

Xem lời giải >>
Bài 14 :

Cho phương trình: \(\left( {4{m^2} - 9} \right)x = 2{m^2} + m - 3\) . Tìm m để phương trình có vô số nghiệm

Xem lời giải >>
Bài 15 :

Cho phương trình \(5 - 6\left( {2x - 3} \right) = x\left( {3 - 2x} \right) + 5\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 16 :

Tích các nghiệm của phương trình \({x^3} - 3{x^2} - x + 3 = 0\) là

Xem lời giải >>
Bài 17 :

Số nghiệm của phương trình \(\left( {{x^2} + 9} \right)\left( {x - 1} \right) = \left( {{x^2} + 9} \right)\left( {x + 3} \right)\) là

Xem lời giải >>
Bài 18 :

Nghiệm nhỏ nhất của phương trình \({\left( { - \dfrac{1}{2}x + 1} \right)^2} = {\left( {\dfrac{3}{2}x - 1} \right)^2}\) là

Xem lời giải >>
Bài 19 :

Tập nghiệm của phương trình \(\left( {{x^2} - x - 1} \right)\left( {{x^2} - x + 1} \right) = 3\) là

Xem lời giải >>
Bài 20 :

Tìm \(m\) để phương trình \(\left( {2m - 5} \right)x - 2{m^2} - 7 = 0\) nhận \(x = - 3\) làm nghiệm.

Xem lời giải >>
Bài 21 :

Số nghiệm của phương trình \({\left( {5{x^2} - 2x + 10} \right)^3} = {\left( {3{x^2} + 10x - 6} \right)^3}\) là:  

Xem lời giải >>
Bài 22 :

Biết rằng phương trình \({\left( {4{x^2} - 1} \right)^2} = 8x + 1\) có nghiệm lớn nhất là \({x_0}\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 23 :

Cho phương trình \({x^4} - 8{x^2} + 16 = 0\). Chọn khẳng định đúng.

Xem lời giải >>
Bài 24 :

Giải các phương trình sau:

a) \(\left( {3x + 1} \right)\left( {2 - 4x} \right) = 0;\)

b) \({x^2} - 3x = 2x - 6.\)

Xem lời giải >>
Bài 25 :

Giải các phương trình sau:

a) \(\left( {{x^2} - 4} \right) + x\left( {x - 2} \right) = 0;\)

b) \({\left( {2x + 1} \right)^2} - 9{x^2} = 0.\)

Xem lời giải >>
Bài 26 :

Bác An có một mảnh đất hình chữ nhật với chiều dài 14m và chiều rộng 12m. Bác dự định xây nhà trên mảnh đất đó và dành một phần diện tích đất để làm sân vườn như hình 2.3. Biết diện tích đất làm nhà là \(100{m^2}.\) Hỏi x bằng bao nhiêu mét?

Xem lời giải >>
Bài 27 :

Giải các phương trình sau:

a) \(2\left( {x + 1} \right) = \left( {5x - 1} \right)\left( {x + 1} \right);\)

b) \(\left( { - 4x + 3} \right)x = \left( {2x + 5} \right)x.\)

Xem lời giải >>
Bài 28 :

Giải các phương trình sau:

a) \({\left( {3x - 1} \right)^2} - {\left( {x + 2} \right)^2} = 0;\)

b) \(x\left( {x + 1} \right) = 2\left( {{x^2} - 1} \right).\)

Xem lời giải >>
Bài 29 :

Giải các phương trình:

a) \(2x\left( {x + 6} \right) + 5\left( {x + 6} \right) = 0\);

b) \(x\left( {3x + 5} \right) - 6x - 10 = 0\).

Xem lời giải >>
Bài 30 :

Giải các phương trình:

a) \(3x(x - 4) + 7(x - 4) = 0\);

b) \(5x(x + 6) - 2x - 12 = 0\);

c) \({x^2} - x - (5x - 5) = 0\);

d) \({(3x - 2)^2} - {(x + 6)^2} = 0\).

Xem lời giải >>