Cho nguyên tố \(p\) chia cho \(42\) có số dư \(r\) là hợp số. Tìm \(r.\)
$r = 29$
$r = 15$
$r = 27$
$r = 25$
+ Biểu diễn số nguyên tố \(p\) theo số chia \(42\) và thương \(r.\)
+ Dựa vào định nghĩa số nguyên tố để lập luận và tìm các giá trị \(r\) thỏa mãn.
Ta có \(p = 42.a + r = 2.3.7.a + r\,\left( {a,r \in N;0 < r < 42} \right)\)
Vì \(p\) là số nguyên tố nên \(r\) không chia hết cho \(2;3;7.\)
Các hợp số nhỏ hơn \(42\) không chia hết cho \(2\) là \(9;15;21;25;27;33;35;39\)
Loại bỏ các số chia hết cho \(3\) và \(7\) ta còn số \(25.\)
Vậy \(r = 25.\)
Đáp án : D
Các bài tập cùng chuyên đề
Khẳng định nào là sai:
Khẳng định nào sau đây là đúng:
Kết quả của phép tính nào sau đây là số nguyên tố:
Thay dấu * để được số nguyên tố $\overline {3*} $:
Thay dấu * để được số nguyên tố $\overline {*1} $:
Cho các số \(21;77;71;101\). Chọn câu đúng.
Cho \(A = 90.17 + 34.40 + 12.51\) và \(B = 5.7.9 + 2.5.6\) . Chọn câu đúng.
Tổng của $3$ số nguyên tố là $578.$ Tìm ra số nguyên tố nhỏ nhất trong $3$ số nguyên tố đó.
Có bao nhiêu số nguyên tố \(x\) thỏa mãn \(50 < x < 60?\)
Tìm tất cả các số tự nhiên \(n\) để \({n^2} + 12n\) là số nguyên tố.
Có bao nhiêu số nguyên tố \(p\) sao cho \(p + 4\) và \(p + 8\) cũng là số nguyên tố.
Chọn khẳng định đúng:
Số nào trong các số sau không là số nguyên tố?
Nếu cho 7 hình vuông đơn vị ghép thành hình chữ nhật thì có mấy cách xếp (Không kể việc xoay chiều dài và chiều rộng)?
Số nguyên tố nhỏ hơn 30 là:
Một ước nguyên tố của 91 là