Đề bài

Xét bài toán trong tình huống mở đầu. Gọi x là số luống trong vườn, y là số cây cải bắp trồng ở mỗi luống \(\left( {x;y \in {\mathbb{N}^*}} \right).\)

a) Lập hệ phương trình đối với hai ẩn x,y.

b) Giải hệ phương trình nhận được ở câu a để tìm câu trả lời cho bài toán.

Phương pháp giải

Tình huống mở đầu: Một mảnh vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số cây bắp cải. Hãy tính số cây bắp cải trồng được trên mảnh vườn đó, biết rằng:

- Nếu tăng thêm 8 luống, nhưng mỗi luống trồng ít đi 3 cây thì số bắp cải của cả vườn ít sẽ ít đi 108 cây;

- Nếu giảm đi 4 luống, nhưng mỗi luống sẽ trồng thêm 2 cây thì số bắp cải cả vườn sẽ tăng thêm 64 cây.

Ba yếu tố ta cần quan tâm trong bài này là số luống (x) , số cây bắp cải trong 1 luống (y) , và tổng số bắp cải trồng được trong vườn và mối liên hệ giữa chúng (tổng số cây bắp cải trong vườn = số luống x số cây bắp cải trong một luống 

Lời giải của GV Loigiaihay.com

a) Số cây cải trồng trong vườn là \(xy\)

Nếu tăng thêm 8 luống, tức số luống sẽ là \(x + 8\); số bắp cải trồng trong 1 luống giảm đi 3 tức là số cây trong 1 luống sẽ là \(y - 3\), số bắp cải của cả vườn ít sẽ ít đi 108 cây nên ta có \(\left( {x + 8} \right)\left( {y - 3} \right) + 108 = xy\) suy ra \( - 3x + 8y =  - 84.\)

Nếu giảm đi 4 luống, tức số luống sẽ là \(x - 4\), nhưng mỗi luống sẽ trồng thêm 2 cây, tức số cây trong 1 luống sẽ là \(y + 2\) thì số bắp cải cả vườn sẽ tăng thêm 64 cây nên ta có \(\left( {x - 4} \right)\left( {y + 2} \right) - 64 = xy\) suy ra \(2x - 4y = 72.\)

Nên ta có hệ phương trình \(\left\{ \begin{array}{l} - 3x + 8y =  - 84\\2x - 4y = 72\end{array} \right.\)

b) Ta có \( - 3x + 8y =  - 84\) suy ra \(x = \frac{{84 + 8y}}{3}\) thế vào phương trình thứ hai của hệ ta được \(2.\frac{{84 + 8y}}{3} - 4y = 72\) suy ra \(\frac{4}{3}y = 16\) nên \(y = 12.\)

Với \(y = 12\) nên \(x = \frac{{84 + 8.12}}{3} = 60.\)

Vậy số cây bắp cải trồng được trên mảnh vườn đó là: 60.12 = 720 cây.

Xem thêm : SGK Toán 9 - Kết nối tri thức

Các bài tập cùng chuyên đề

Bài 1 :

Cho hệ phương trình $\left\{ \begin{array}{l}x - y = 5\\3x + 2y = 18\end{array} \right.$có nghiệm $\left( {x;y} \right)$. Tích $x.y$ là

  • A.

    $5$

  • B.

    $\dfrac{84}{25}$

  • C.

    $\dfrac{25}{84}$

  • D.

    $\dfrac{84}{5}$

Xem lời giải >>

Bài 2 :

Cho hệ phương trình $\left\{ \begin{array}{l}2x - 7y = 8\\10x + 3y = 21\end{array} \right.$có nghiệm $\left( {x;y} \right)$. Tổng $x + y$ là

  • A.

    $\dfrac{5}{4}$

  • B.

    $\dfrac{9}{2}$

  • C.

    $\dfrac{3}{2}$

  • D.

    $\dfrac{7}{4}$

Xem lời giải >>

Bài 3 :

Số nghiệm của hệ phương trình $\left\{ \begin{array}{l}\left( {x + 1} \right)\left( {y - 1} \right) = xy - 1\\\left( {x - 3} \right)\left( {y - 3} \right) = xy - 3\end{array} \right.$ là

  • A.

    $1$

  • B.

    $0$

  • C.

    $2$

  • D.

    Vô số.

Xem lời giải >>

Bài 4 :

Cho hệ phương trình $\left\{ \begin{array}{l}2x + by =  - 1\\bx - 2ay = 1\end{array} \right.$. Biết rằng hệ phương trình có nghiệm là $\left( {1; - 2} \right)$, tính $a - b$.

  • A.

    $\dfrac{{13}}{8}$

  • B.

    $ - \dfrac{{13}}{8}$

  • C.

    $\dfrac{5}{8}$

  • D.

    $ - \dfrac{5}{8}$

Xem lời giải >>

Bài 5 :

Cho hai đường thẳng:

${d_1}:mx - 2\left( {3n + 2} \right)y = 6$ và ${d_2}:\left( {3m - 1} \right)x + 2ny = 56.$

Tìm tích $m. n$ để  hai đường thẳng cắt nhau tại điểm $I\left( { - 2;3} \right)$.

  • A.

    $0$

  • B.

    $1$

  • C.

    $2$

  • D.

    $ - 2$

Xem lời giải >>

Bài 6 :

Tìm a, b để đường thẳng \(y = ax + b\) đi qua hai điểm  \(M(3; - 5),N\left( {1;2} \right)\)

  • A.

    $a = \dfrac{7}{2};b = \dfrac{-11}{2}$

  • B.

    $a = \dfrac{-7}{2};b = \dfrac{-11}{2}$

  • C.

    $a = \dfrac{7}{2};b = \dfrac{11}{2}$

  • D.

    $a = \dfrac{-7}{2};b = \dfrac{11}{2}$

Xem lời giải >>

Bài 7 :

Số nghiệm của hệ phương trình $\left\{ \begin{array}{l}\dfrac{1}{{x - 2}} + \dfrac{1}{{2y - 1}} = 2\\\dfrac{2}{{x - 2}} - \dfrac{3}{{2y - 1}} = 1\end{array} \right.$là

  • A.

    $1$

  • B.

    $0$

  • C.

    $2$

  • D.

    Vô số.

Xem lời giải >>

Bài 8 :

Biết nghiệm của hệ phương trình $\left\{ \begin{array}{l}\dfrac{1}{x} - \dfrac{1}{y} = 1\\\dfrac{3}{x} + \dfrac{4}{y} = 5\end{array} \right.$là $\left( {x;y} \right)$. Tính $9x + 2y$.

  • A.

    $10$

  • B.

    $14$

  • C.

    $11$

  • D.

    $13$

Xem lời giải >>

Bài 9 :

Cho hệ phương trình\(\left\{ \begin{array}{l}mx - y = 2m\\4x - my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm hệ thức liên hệ giữa $x, y$ không phụ thuộc vào $m$

  • A.

    $2x + y + 3 = 0$

  • B.

    $2x - y = 3$

  • C.

    $ - 2x + y = 3$

  • D.

    $2x + y = 3$

Xem lời giải >>

Bài 10 :

Cho hệ phương trình\(\left\{ \begin{array}{l}mx - y = 2m\\4x - my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm giá trị của m để : \(6x - 2y = 13.\)

  • A.

    $m =  - 9$

  • B.

    $m = 9$

  • C.

    $m = 8$

  • D.

    $m =  - 8$

Xem lời giải >>

Bài 11 :

Cho hệ phương trình \(\left\{ \begin{array}{l}x - y = 3\\3x - 4y = 2\end{array} \right.\)có nghiệm $\left( {x;y} \right)$. Tích ${x^2}.y$ là

  • A.

    $7000$

  • B.

    $490$

  • C.

    $70$

  • D.

    $700$

Xem lời giải >>

Bài 12 :

Cho hệ phương trình \(\left\{ \begin{array}{l}7x - 3y = 5\\4x + y = 2\end{array} \right.\)có nghiệm $\left( {x;y} \right)$. Tổng $x + y$ là

  • A.

    $\dfrac{5}{9}$

  • B.

    $ - \dfrac{5}{{19}}$

  • C.

    $\dfrac{5}{{19}}$

  • D.

    $ - \dfrac{5}{9}$

Xem lời giải >>

Bài 13 :

Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\left( {x + 1} \right)\left( {y - 3} \right) = \left( {x - 1} \right)\left( {y + 3} \right)}\\{\left( {x - 3} \right)\left( {y + 1} \right) = \left( {x + 1} \right)\left( {y - 3} \right)}\end{array}} \right.\) . Chọn câu đúng.

  • A.

    Hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {1;1} \right)\)

  • B.

    Hệ phương trình vô nghiệm

  • C.

    Hệ phương trình vô số nghiệm

  • D.

    Hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {0;0} \right)\)

Xem lời giải >>

Bài 14 :

Cho hệ phương trình $\left\{ \begin{array}{l}2x + by =  - 4\\bx - ay =  - 5\end{array} \right.$. Biết rằng hệ phương trình có nghiệm là $\left( {1; - 2} \right)$     ,tính $a + b$.

  • A.

    $ - 1$

  • B.

    $1$

  • C.

    $2$

  • D.

    $ - 7$

Xem lời giải >>

Bài 15 :

Cho hai đường thẳng : \({d_1}:mx - 2(3n + 2)y = 18\) và \({d_2}:(3m - 1)x + 2ny =  - 37\) . Tìm các giá trị của m và n để \({d_1},{d_2}\) cắt nhau tại điểm $I\left( { - 5;2} \right).$

  • A.

    $m = 2;n = 3.$

  • B.

    $m =  - 2;n =  - 3.$    

  • C.

    $m = 2;n =  - 3.$

  • D.

    $m = 3;n =  - 2.$

Xem lời giải >>

Bài 16 :

Tìm a, b để đường thẳng \(y = ax + b\) đi qua hai điểm  \(A\left( {2;1} \right)\) và \(B\left( { - 2;3} \right)\)

  • A.

    $a =  - \dfrac{1}{2};b = 2$

  • B.

    $a = \dfrac{1}{2};b = 2$

  • C.

    $a = 2;b =  - \dfrac{1}{2}$    

  • D.

    $a =  - \dfrac{1}{2};b = 1$

Xem lời giải >>

Bài 17 :

Hệ phương trình  \(\left\{ {\begin{array}{*{20}{c}}{\dfrac{{2x}}{{x + 1}} + \dfrac{y}{{y + 1}} = 3}\\{\dfrac{x}{{x + 1}} + \dfrac{{3y}}{{y + 1}} =  - 1}\end{array}} \right.\) có nghiệm là

  • A.

    $\left( { - \dfrac{1}{2}; - 2} \right)$

  • B.

    $\left( {2;\dfrac{1}{2}} \right)$        

  • C.

    $\left( { - 2; - \dfrac{1}{2}} \right)$

  • D.

    $\left( {2; - \dfrac{1}{2}} \right)$

Xem lời giải >>

Bài 18 :

Biết nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\dfrac{1}{{3x}} + \dfrac{1}{{3y}} = \dfrac{1}{4}}\\{\dfrac{5}{{6x}} + \dfrac{1}{y} = \dfrac{2}{3}}\end{array}} \right.\)là $\left( {x;y} \right)$. Tính $x - 3y$

  • A.

    $ - 2$

  • B.

    $2$

  • C.

    $6$

  • D.

    $ - 4$

Xem lời giải >>

Bài 19 :

Cho hệ phương trình \(\left\{ \begin{array}{l}x + my = 1\\mx - y =  - m\end{array} \right.\). Hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m là:

  • A.

    \(2x + y = 3\)

  • B.

    \(\dfrac{x}{y} = 3\)

  • C.

    \(xy = 3\)         

  • D.

    \({x^2} + {y^2} = 1\) 

Xem lời giải >>

Bài 20 :

Cho hệ phương trình \(\left\{ \begin{array}{l}x + (m + 1)y = 1\\4x - y =  - 2\end{array} \right.\) . Tìm m để hệ phương trình có nghiệm \((x;y)\) thỏa mãn \(2x + 2y = 5\)

  • A.

    \(m =  - \dfrac{5}{8}\)

  • B.

    \(m = \dfrac{5}{8}\)

  • C.

    \(m = \dfrac{8}{5}\)

  • D.

    \(m =  - \dfrac{8}{5}\)

Xem lời giải >>

Bài 21 :

Giải hệ phương trình: \(\left\{ \begin{array}{l}\left( {x + y} \right) + \left( {x + 2y} \right) =  - 2\\3\left( {x + y} \right) + \left( {x - 2y} \right) = 1\end{array} \right.\) ta được nghiệm là:

  • A.
    \(\left( {\dfrac{1}{2}; - 1} \right)\).
  • B.
    \(\left( {\dfrac{1}{2};  1} \right)\).
  • C.
    \(\left( {-1;\dfrac{1}{2}} \right)\).
  • D.
    \(\left( {1;\dfrac{1}{2}} \right)\).
Xem lời giải >>

Bài 22 :

Cho hệ phương trình: \(\left\{ \begin{array}{l}mx + 4y = 20\\x + my = 10\end{array} \right.\), với m là tham số.  Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất?

  • A.
    \(m =  \pm 2\)
  • B.
    \(m \ne  \pm 2\)
  • C.
    m = 2
  • D.
    m = - 2
Xem lời giải >>

Bài 23 :

Tìm m để hệ phương trình sau có vô số nghiệm: \(\left\{ \begin{array}{l}2x + my = m + 2\\\left( {m + 1} \right)x + 2my = 2m + 4\end{array} \right.\)

  • A.
    \(m \in \left\{ {3;0; - 2} \right\}\)
  • B.
    \(m=3\)
  • C.
    \(m=0\)
  • D.
    \(m=-2\)
Xem lời giải >>

Bài 24 :

Tìm các giá trị của a để hệ phương trình : \(\left\{ \begin{array}{l}\left( {a + 1} \right)x + 8y = 4a\\ax + \left( {a + 3} \right)y = 3a - 1\end{array} \right.\) có vô số nghiệm.

  • A.
    \(a=1\)
  • B.
    \(a=2\)
  • C.
    \(a=3\)
  • D.
    Cả 3 đáp án trên đều đúng
Xem lời giải >>

Bài 25 :

Hệ phương trình \(\left\{ \begin{array}{l}2x + y = 5\\x = 1 + y\end{array} \right.\) có nghiệm là:

  • A.
    \(\left( {x;\,\,y} \right) = \left( {2;\,1} \right)\)         
  • B.
    \(\left( {x;\,\,y} \right) = \left( {1;\,\,3} \right)\)   
  • C.
    \(\left( {x;\,\,y} \right) = \left( { - 2; - 1} \right)\)   
  • D.
    \(\left( {x;\,\,y} \right) = \left( {6;\,\,5} \right)\)   
Xem lời giải >>

Bài 26 :

Giải hệ phương trình : \(\left\{ \begin{array}{l}\dfrac{1}{{{x^2}}} + \dfrac{2}{{{y^2}}} = 3\\\dfrac{4}{{{x^2}}} + \dfrac{6}{{{y^2}}} = 10\end{array} \right.\), ta được các nghiệm là: 

  • A.
    Vô nghiệm
  • B.
    \(\left( { - 1;1} \right),\left( {1;1} \right);\left( {1; - 1} \right);\left( { - 1; - 1} \right).\)
  • C.
    \(\left( { - 1;1} \right);\left( {1; - 1} \right);\left( { - 1; - 1} \right).\)
  • D.
    \(\left( { - 1;1} \right),\left( {1;1} \right).\)
Xem lời giải >>

Bài 27 :

Cho hệ phương trình \(\left\{ \matrix{ x + my = 1 \hfill \cr mx - y =  - m \hfill \cr}  \right.\)

Hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m là:

  • A.
    \(2x + y = 3\)
  • B.

    \(\displaystyle {x \over y} = 3\)

  • C.
    \(xy = 3\)
  • D.
    \({x^2} + {y^2} = 1\)
Xem lời giải >>

Bài 28 :

Cho hệ phương trình \(\left\{ \begin{array}{l}x + y = 3\\2x - 3y = 1\end{array} \right..\) Giải hệ phương trình theo hướng dẫn sau:

1. Từ phương trình thứ nhất, biểu diễn y theo x rồi thế vào phương trình thứ hai để được một phương trình với một ẩn x. Giải phương trình một ẩn đó để tìm giá trị của x.

2. Sử dụng giá trị tìm được của x để tìm giá tị của y rồi viết nghiệm của hệ phương trình đã cho. 

Xem lời giải >>

Bài 29 :

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\left\{ \begin{array}{l}x - 3y = 2\\ - 2x + 5y = 1;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + y =  - 1\\7x + 2y = -3.\end{array} \right.\)

Xem lời giải >>

Bài 30 :

Giải hệ phương trình \(\left\{ \begin{array}{l} - 2x + y = 3\\4x - 2y =  - 4\end{array} \right.\) bằng phương pháp thế

Xem lời giải >>