Cho \(A = 90.17 + 34.40 + 12.51\) và \(B = 5.7.9 + 2.5.6\) . Chọn câu đúng.
A là số nguyên tố, B là hợp số
A là hợp số, B là số nguyên tố
Cả A và B là số nguyên tố
Cả A và B đều là hợp số
+ Dựa vào tính chia hết của một tổng để xét xem A, B có chia hết cho số nào khác \(1\) hay không?
+ Sử dụng định nghĩa số nguyên tố và hợp số để xác định xem A, B là số nguyên tố hay hợp số.
+) Ta có \(A = 90.17 + 34.40 + 12.51\)
Nhận thấy \(17 \, \vdots \, 17;\,34 \, \vdots \, 17;51 \, \vdots \, 17\) nên \(A = 90.17 + 34.40 + 12.51\) chia hết cho \(17\) nên ngoài ước là \(1\) và chính nó thì \(A\) còn có ước là \(17\). Do đó \(A\) là hợp số.
+) Ta có \(B = 5.7.9 + 2.5.6 = 5.\left( {7.9 + 2.6} \right) \, \vdots \, 5\) nên \(B = 5.7.9 + 2.5.6\) ngoài ước là \(1\) và chính nó thì \(A\) còn có ước là \(5\). Do đó \(B\) là hợp số.
Vậy cả \(A\) và \(B\) đều là hợp số.
Đáp án : D
Các bài tập cùng chuyên đề
Khẳng định nào là sai:
Khẳng định nào sau đây là đúng:
Kết quả của phép tính nào sau đây là số nguyên tố:
Thay dấu * để được số nguyên tố $\overline {3*} $:
Thay dấu * để được số nguyên tố $\overline {*1} $:
Cho các số \(21;77;71;101\). Chọn câu đúng.
Tổng của $3$ số nguyên tố là $578.$ Tìm ra số nguyên tố nhỏ nhất trong $3$ số nguyên tố đó.
Có bao nhiêu số nguyên tố \(x\) thỏa mãn \(50 < x < 60?\)
Tìm tất cả các số tự nhiên \(n\) để \({n^2} + 12n\) là số nguyên tố.
Có bao nhiêu số nguyên tố \(p\) sao cho \(p + 4\) và \(p + 8\) cũng là số nguyên tố.
Cho nguyên tố \(p\) chia cho \(42\) có số dư \(r\) là hợp số. Tìm \(r.\)
Chọn khẳng định đúng:
Số nào trong các số sau không là số nguyên tố?
Nếu cho 7 hình vuông đơn vị ghép thành hình chữ nhật thì có mấy cách xếp (Không kể việc xoay chiều dài và chiều rộng)?
Số nguyên tố nhỏ hơn 30 là:
Một ước nguyên tố của 91 là