Thay dấu * để được số nguyên tố $\overline {3*} $:
$7$
$4$
$6$
$9$
- Dấu * có thể nhận các giá trị ${\rm{\{ 7; 4; 6; 9\} }}$
- Dùng định nghĩa số nguyên tố để tìm ra số nguyên tố.
Đáp án A: Vì $37$ chỉ chia hết cho \(1\) và \(37\) nên \(37\) là số nguyên tố, do đó chọn A.
Đáp án B: $34$ không phải là số nguyên tố ($34$ chia hết cho $\left\{ {2;{\rm{ }}4;{\rm{ }} \ldots } \right\}$). Do đó loại B.
Đáp án C: $36$ không phải là số nguyên tố ($36$ chia hết cho $\left\{ {1;\,\,2;{\rm{ 3;}}\,...;\,{\rm{36}}} \right\}$). Do đó loại C.
Đáp án D: $39$ không phải là số nguyên tố ($39$ chia hết cho $\left\{ {1;\,\,3;...\,;\,39} \right\}).$ Do đó loại D.
Đáp án : A
Các bài tập cùng chuyên đề
Khẳng định nào là sai:
Khẳng định nào sau đây là đúng:
Kết quả của phép tính nào sau đây là số nguyên tố:
Thay dấu * để được số nguyên tố $\overline {*1} $:
Cho các số \(21;77;71;101\). Chọn câu đúng.
Cho \(A = 90.17 + 34.40 + 12.51\) và \(B = 5.7.9 + 2.5.6\) . Chọn câu đúng.
Tổng của $3$ số nguyên tố là $578.$ Tìm ra số nguyên tố nhỏ nhất trong $3$ số nguyên tố đó.
Có bao nhiêu số nguyên tố \(x\) thỏa mãn \(50 < x < 60?\)
Tìm tất cả các số tự nhiên \(n\) để \({n^2} + 12n\) là số nguyên tố.
Có bao nhiêu số nguyên tố \(p\) sao cho \(p + 4\) và \(p + 8\) cũng là số nguyên tố.
Cho nguyên tố \(p\) chia cho \(42\) có số dư \(r\) là hợp số. Tìm \(r.\)
Chọn khẳng định đúng:
Số nào trong các số sau không là số nguyên tố?
Nếu cho 7 hình vuông đơn vị ghép thành hình chữ nhật thì có mấy cách xếp (Không kể việc xoay chiều dài và chiều rộng)?
Số nguyên tố nhỏ hơn 30 là:
Một ước nguyên tố của 91 là