Dùng ba trong bốn chữ số \(5;8;4;0\) hãy lập ra các số tự nhiên chia hết cho \(3\) mà không chia hết cho \(9.\)
\(840;804;408\)
\(840;804;408;480\)
\(540;450;405\)
\(540;450;405;504\)
Sử dụng dấu hiệu chia hết cho \(3.\) Ta lập các bộ số có tổng chia hết cho \(3\) mà không chia hết cho \(9.\)
Sau đó tìm ra các số thỏa mãn đề bài từ bộ số tìm được.
Ta thấy chỉ có \(8 + 4 + 0 = 12\) chia hết cho \(3\) nhưng không chia hết cho \(9\) nên các số cần tìm là \(840;480;408;804.\)
Đáp án : B
Các bài tập cùng chuyên đề
Hãy chọn câu sai:
Hãy chọn câu sai:
Tổng chia hết cho 5 là
Trong các số $333; 354; 360; 2457; 1617; 152,$ các số chia hết cho $9$ là
Từ ba trong 4 số 5, 6, 3, 0, hãy ghép thành số có ba chữ số khác nhau là số lớn nhất chia hết cho 2 và 5.
Cho $5$ số $0;1;3;6;7.$ Có bao nhiêu số tự nhiên có ba chữ số và chia hết cho 3 được lập từ các số trên mà các chữ số không lặp lại.
Cho số \(A = \overline {a785b} \) . Tìm tổng các chữ số $a$ và $b$ sao cho $A$ chia $9$ dư $2.$
Cho số \(N = \overline {5a27b} \) .Có bao nhiêu số N sao cho N là số có $5$ chữ số khác nhau và N chia cho $3$ thì dư $2,$ N chia cho $5$ thì dư $1$ và N chia hết cho $2.$
Tìm các chữ số $x, y$ biết rằng: \(\overline {23x5y} \) chia hết cho $2; 5$ và $9.$
Chọn câu trả lời đúng.
Trong các số \(2055;6430;5041;2341;2305\)
Số tự nhiên \(a\) chia cho \(65\) dư \(10.\) Khi đó số tự nhiên \(a\)
Có bao nhiêu số tự nhiên dạng \(\overline {5a42b} \) chia hết cho cả \(2;5\) và \(3?\)
Tìm các số tự nhiên \(x\) vừa chia hết cho \(2\) vừa chia hết cho \(5\) và \(1998 < x < 2018.\)
Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
Có bao nhiêu cặp số \(a;b\) sao cho số \(\overline {52ab} \) chia hết cho \(9\) và chia cho \(5\) dư \(2.\)
Kết quả của phép tính \({99^5} - {98^4} + {97^3} - {96^2}\) chia hết cho
Số \(A = \overline {abcd} - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?
Trong những số sau, có bao nhiêu số chia hết cho 2?
100000984, 12345, 12543456, 1234567, 155498
Cho \(\overline {17*} \)chia hết cho 2. Số thay thế cho * có thể là
Số lớn nhất có 4 chữ số khác nhau và chia hết cho 2 là: