Đề bài

Có bao nhiêu số tự nhiên \(n\) để \(\left( {n + 7} \right) \vdots \left( {n + 2} \right)\) ?

  • A.

    \(3\)  

  • B.

    \(2\)       

  • C.

    \(1\)     

  • D.

    \(0\)

Phương pháp giải

TC1:  Nếu số hạng của một hiệu đều chia hết cho cùng một số thì hiệu chia hết cho số đó.

Lời giải của GV Loigiaihay.com

Vì \(\left( {n + 2} \right) \vdots \left( {n + 2} \right)\) nên theo tính chất 1 để \(\left( {n + 7} \right) \vdots \left( {n + 2} \right)\) thì \(\left[ {\left( {n + 7} \right) - \left( {n + 2} \right)} \right] \vdots \left( {n + 2} \right)\) hay \(5 \vdots \left( {n + 2} \right)\) .

Suy ra \(\left( {n + 2} \right) \in \left\{ {1;5} \right\}\) .

Vì \(n + 2 \ge 2\) nên \(n + 2 = 5 \Rightarrow n = 5 - 2 = 3.\)

Vậy \(n = 3.\)

Vậy có một số tự nhiên \(n\) thỏa mãn yêu cầu.

Đáp án : C

Các bài tập cùng chuyên đề