Năm nay tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương. Gọi x là tuổi của Phương năm nay vậy thì phương trình tìm x là
Biểu diễn các đại lượng qua x.
Tuổi của Phương năm nay là x (tuổi)
Tuổi của mẹ Phương năm nay là 3x (tuổi)
Tuổi của Phương sau 13 năm là x + 13 (tuổi)
Tuổi của mẹ Phương sau 13 năm là 3x + 13 (tuổi)
Vì sau năm tuổi mẹ chỉ còn gấp 2 lần tuổi Phương nên ta có phương trình \(3x + 13 = 2\left( {x + 13} \right)\)
Đáp án A.
Đáp án : A
Các bài tập cùng chuyên đề
Lớp 8B có 40 học sinh trong đó có 18 học sinh nữ. Lớp phó lao động chọn một bạn để trực nhật trong một buổi học. Xác suất thực nghiệm của biến cố “Một bạn nam trực nhật lớp trong buổi học” là:
Cho tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng là 2. Tam giác DEF đồng dạng với tam giác MNP theo tỉ số đồng dạng là 2. Biết \(\widehat A = {30^0}\), tính số đo \(\widehat M\)
Tam ABC có M, N, P lần lượt là trung điểm của AB, BC, CA. Biết chu vi tam giác MNP là 12cm, chu vi tam giác ABC là:
Giải các phương trình sau:
a) \(x + 2 = - 6x + 16\)
b) \(2\left( {x - 3} \right) = 5\left( {x - 2} \right) + 8\)
c) \(\frac{{x - 1}}{9} + \frac{{x - 3}}{7} = 2\)
d) \(\frac{{2x + 1}}{3} + \frac{{3x - 2}}{2} = \frac{1}{6}\)
1. Có hai chiếc cột dựng thẳng đứng trên mặt đất với chiều cao lần lượt là 5 m và 3 m. Người ta nối hai sợi dây từ đỉnh cột này đến chân cột kia và hai sợi dây cắt nhau tại một điểm. Tính độ cao ℎ của điểm đó so với mặt đất.
2. Cho tam giác ABC nhọn (AB < AC) có hai đường cao BE, CF cắt nhau tại H
a) Chứng minh $\Delta ABE\backsim \Delta ACF$
b) Đường thẳng qua E song song với AB, cắt đoạn CH tại D. Chứng minh \(H{E^2} = HD.HC\).
Cho ba số thực a, b, c khác 2 thỏa mãn a + b + c = 6. Tính giá trị của biểu thức:
\(M = \frac{{{{\left( {a - 2} \right)}^2}}}{{\left( {b - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {b - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {c - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {b - 2} \right)}}\)