Đề bài

Cho hàm số \(y = f(x) = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 1\) có đồ thị (C):

a) Phương trình tiếp tuyến của (C) biết tiếp tuyến có hệ số góc bằng 2 là: \(y = 2x + 3\) hoặc \(y = 2x - 3\)

Đúng
Sai

b) Phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường thẳng \(({d_1})\) : \(y =  - \frac{1}{6}x + 1\) là \(y = 6x - \frac{{25}}{2}\) hoặc \(y = 6x + \frac{{25}}{3}\)

Đúng
Sai

c) Phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng \(({d_2})\):\(y = 2020\)là y = 1 hoặc \(y = \frac{5}{6}\)

Đúng
Sai

d) Phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng \(({d_3}):4x + y - 5 = 0\)là \(y =  - 4x - 2\)

Đúng
Sai
Đáp án

a) Phương trình tiếp tuyến của (C) biết tiếp tuyến có hệ số góc bằng 2 là: \(y = 2x + 3\) hoặc \(y = 2x - 3\)

Đúng
Sai

b) Phương trình tiếp tuyến của (C) biết tiếp tuyến vuông góc với đường thẳng \(({d_1})\) : \(y =  - \frac{1}{6}x + 1\) là \(y = 6x - \frac{{25}}{2}\) hoặc \(y = 6x + \frac{{25}}{3}\)

Đúng
Sai

c) Phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng \(({d_2})\):\(y = 2020\)là y = 1 hoặc \(y = \frac{5}{6}\)

Đúng
Sai

d) Phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng \(({d_3}):4x + y - 5 = 0\)là \(y =  - 4x - 2\)

Đúng
Sai
Phương pháp giải

Bước 1: Gọi M(x0; f(x0)) là tọa độ tiếp điểm của tiếp tuyến của (C) thì f'(x0) = k

Bước 2: Giải phương trình f'(x0) = k với ẩn là x0.

Bước 3: Phương trình tiếp tuyến của (C) có dạng y = k(x – x0) + f(x0).

Ta có\(y' = f'(x) = {x^2} - x\)

  1. a) Gọi \(M({x_0},{y_0}) \in (C)\) mà tiếp tuyến của (C) tại M có hệ số góc k = 2

\( \Rightarrow f'({x_0}) = 2 \Leftrightarrow x_0^2 - {x_0} = 2 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} =  - 1\end{array} \right.\)

* Với \({x_0} = 2\) ta có \({y_0} = f(0) = \frac{1}{3}{.2^3} - \frac{1}{2}{.2^2} + 1 = \frac{5}{3} \Rightarrow {M_1}(2;\frac{5}{3})\)   

Phương trình tiếp tuyến của (C) tại điểm \({M_1}(2;\frac{5}{3})\) là \(y = 2(x - 2) + \frac{5}{3}\,\,hay\,\,y = 2x - \frac{7}{3}\)

* Với \({x_0} =  - 1\)ta có \({y_0} = f( - 1) = \frac{1}{6} \Rightarrow {M_2}( - 1;\frac{1}{6})\) 

Phương trình tiếp tuyến của (C) tại điểm \({M_2}( - 1;\frac{1}{6})\) là \(y = 2(x + 1) + \frac{1}{6}\,\,hay\,\,y = 2x + \frac{{13}}{6}\)

  1. b) Gọi k là hệ số góc của tiếp tuyến của đồ thị (C)

Do tiếp tuyến vuông góc với \((d):y =  - \frac{1}{6}x + 1\) nên \( - \frac{1}{6}k =  - 1 \Leftrightarrow k = 6\)

Gọi \(M({x_0},{y_0}) \in (C)\)mà tiếp tuyến của (C) tại M có hệ số góc k = 6.

\(f'({x_0}) = 6 \Rightarrow x_0^2 - {x_0} = 6 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} =  - 2\end{array} \right.\)

* Với \({x_0} = 3\) ta có \({y_0} = f(3) = \frac{{11}}{2} \Rightarrow {M_1}(3;\frac{{11}}{2}) \in (C)\)

Phương trình tiếp tuyến của (C) tại \({M_1}(3;\frac{{11}}{2}\)) là \(y = 6(x - 3) + \frac{{11}}{2}\,\,hay\,\,y = 6x - \frac{{25}}{2}\)

* Với \({x_0} =  - 2\) ta có \({y_0} = f( - 2) =  - \frac{{11}}{3} \Rightarrow {M_2}( - 2; - \frac{{11}}{3}) \in (C)\)

Phương trình tiếp tuyến của (C) tại \({M_2}( - 2; - \frac{{11}}{3})\) là \(y = 6(x + 2) - \frac{{11}}{3}\,\,hay\,\,y = 6x + \frac{{25}}{3}\)

  1. c) Gọi k là hệ số góc của tiếp tuyến của đồ thị (C).

Do tiếp tuyến song song với (d') : y = 2020 với hệ số góc là 0

k = 0

Gọi \(M({x_0},{y_0}) \in (C)\)mà tiếp tuyến của (C) tại M có hệ số góc k = 0 

\( \Rightarrow f'({x_0}) = 0 \Rightarrow x_0^2 - {x_0} = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} = 1\end{array} \right.\)

* Với \({x_0} = 0\)ta có \({y_0} = f(0) = 1 \Rightarrow {M_1}(0;1) \in (C)\)

Phương trình tiếp tuyến của (C) tại \({M_1}(0;1)\)là y = 1.

* Với \({x_0} = 1\)ta có \({y_0} = f(1) = \frac{5}{6} \Rightarrow {M_2}(1;\frac{5}{6}) \in (C)\)

Phương trình tiếp tuyến của (C) tại \({M_2}(1;\frac{5}{6})\) là \(y = \frac{5}{6}\) 

d)\(({d_3}):4x + y - 5 = 0\) hay \(({d_3}):y =  - 4x + 5\)

Gọi k là hệ số góc của tiếp tuyến của đồ thị (C).

Do tiếp tuyến song song với \(({d_3}):y =  - 4x + 5\)với hệ số góc là 4

Nên k = -4

\( \Rightarrow f'({x_0}) =  - 4 \Rightarrow x_0^2 - {x_0} =  - 4 \Rightarrow \)PT vô nghiệm

Suy ra không tổn tại tiếp tuyến thỏa mãn yêu cầu đề bài

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề