DEAL SỐC 50% HỌC PHÍ + TẶNG KÈM BỘ SÁCH TỔNG HỢP ĐỀ CẤU TRÚC MỚI NHẤT
Cho hình chóp S. ABCD có đáy ABCD là hình thoi và SA=SC,SB=SD. Gọi O là giao điểm của AC và BD. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là:
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì d⊥(P).
+ Cho mặt phẳng (P). Xét một điểm M tùy ý trong không gian. Gọi d là đường thẳng đi qua điểm M và vuông góc với (P). Gọi M’ là giao điểm của đường thẳng d và mặt phẳng (P). Khi đó, điểm M’ được gọi là hình chiếu vuông góc của điểm M lên mặt phẳng (P).
Vì ABCD là hình thoi, O là giao điểm của AC và BD nên O là trung điểm của AC, O là trung điểm của BD.
Vì SA=SC nên tam giác SAC cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác. Suy ra, SO⊥AC.
Vì SB=SD nên tam giác SBD cân tại S. Do đó, SO là đường trung tuyến đồng thời là đường cao của tam giác. Suy ra, SO⊥BD.
Vì SO⊥AC, SO⊥BD và BD và AC cắt nhau tại O và nằm trong mặt phẳng (ABCD) nên SO⊥(ABCD). Do đó, hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm O.
Đáp án C.
Đáp án : C
Các bài tập cùng chuyên đề
Khẳng định nào sau đây là đúng?
Chọn đáp án đúng.
Cho số thực a và số nguyên dương n (n≥2). Số b được gọi là căn bậc n của số a nếu:
Chọn đáp án đúng:
Rút gọn biểu thức (93+√3−9√3−1).3−2√3 được kết quả là:
Cho a, b là các số thực dương. Rút gọn biểu thức (4√a3b2)83√√a12b6
Chọn đáp án đúng.
Chọn đáp án đúng.
Cho a, b là các số thực dương. Giá trị của lnab+lnba bằng:
Chọn đáp án đúng.
Cho a>0,a≠1,b>0. Với mọi số nguyên dương n≥2 ta có:
Cho logab=4. Giá trị của loga(a3b2) bằng:
Cho hai số thực dương a, b thỏa mãn a3b2=1000. Giá trị của biểu thức P=3loga+2logb là:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên (0;+∞)?
Hàm số nào dưới đây là hàm số đồng biến trên R?
Đồ thị hàm số y=62x luôn đi qua điểm nào dưới đây?
Chọn đáp án đúng.
Hàm số y=logx có cơ số là:
Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số y=logax,y=logbx,y=logcx thể hiện ở hình vẽ dưới đây.
Khẳng định nào dưới đây là đúng?
Tập xác định của hàm số y=1√3−x+ln(x−1) là:
Bất phương trình 6x≥b có tập nghiệm là R khi:
Tập nghiệm của bất phương trình (1π)x>(1π)3 là:
Tập nghiệm của bất phương trình logx≥2 là:
Cho phương trình 4x+2x+2−5=0. Đặt t=2x ta được phương trình là: