Cho tứ diện ABCD có ABC và BCD là các tam giác cân tại A và D. Gọi I là trung điểm của BC. Kẻ \(AH \bot DI\left( {H \in DI} \right)\). Hình chiếu vuông góc của A trên mặt phẳng (BCD) là:
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
+ Cho mặt phẳng (P). Xét một điểm M tùy ý trong không gian. Gọi d là đường thẳng đi qua điểm M và vuông góc với (P). Gọi M’ là giao điểm của đường thẳng d và mặt phẳng (P). Khi đó, điểm M’ được gọi là hình chiếu vuông góc của điểm M lên mặt phẳng (P).
Vì tam giác ABC cân tại A nên AI là đường trung tuyến đồng thời là đường cao. Do đó, \(AI \bot BC\).
Vì tam giác DBC cân tại D nên DI là đường trung tuyến đồng thời là đường cao. Do đó, \(DI \bot BC\).
Ta có: \(AI \bot BC\), \(DI \bot BC\), DI và AI cắt nhau tại I và nằm trong mặt phẳng (AID) nên \(BC \bot \left( {AID} \right)\). Mà \(AH \subset \left( {ADI} \right) \Rightarrow AH \bot CB\)
Lại có: \(AH \bot DI\), DI và BC cắt nhau tại I và nằm trong mặt phẳng (BCD). Do đó, \(AH \bot \left( {BCD} \right)\). Do đó, hình chiếu vuông góc của A trên mặt phẳng (BCD) là điểm H.
Đáp án B.
Đáp án : B
Các bài tập cùng chuyên đề
Khẳng định nào sau đây là đúng?
Chọn đáp án đúng.
Cho số thực a và số nguyên dương n \(\left( {n \ge 2} \right)\). Số b được gọi là căn bậc n của số a nếu:
Chọn đáp án đúng:
Rút gọn biểu thức \(\left( {{9^{3 + \sqrt 3 }} - {9^{\sqrt 3 - 1}}} \right){.3^{ - 2\sqrt 3 }}\) được kết quả là:
Cho a, b là các số thực dương. Rút gọn biểu thức \(\frac{{{{\left( {\sqrt[4]{{{a^3}{b^2}}}} \right)}^8}}}{{\sqrt[3]{{\sqrt {{a^{12}}{b^6}} }}}}\)
Chọn đáp án đúng.
Chọn đáp án đúng.
Cho a, b là các số thực dương. Giá trị của \(\ln \frac{a}{b} + \ln \frac{b}{a}\) bằng:
Chọn đáp án đúng.
Cho \(a > 0,a \ne 1,b > 0\). Với mọi số nguyên dương \(n \ge 2\) ta có:
Cho \({\log _a}b = 4\). Giá trị của \({\log _a}\left( {{a^3}{b^2}} \right)\) bằng:
Cho hai số thực dương a, b thỏa mãn \({a^3}{b^2} = 1000\). Giá trị của biểu thức \(P = 3\log a + 2\log b\) là:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên \(\left( {0; + \infty } \right)\)?
Hàm số nào dưới đây là hàm số đồng biến trên \(\mathbb{R}\)?
Đồ thị hàm số \(y = {6^{2x}}\) luôn đi qua điểm nào dưới đây?
Chọn đáp án đúng.
Hàm số \(y = \log x\) có cơ số là:
Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số \(y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\) thể hiện ở hình vẽ dưới đây.
Khẳng định nào dưới đây là đúng?
Tập xác định của hàm số \(y = \frac{1}{{\sqrt {3 - x} }} + \ln \left( {x - 1} \right)\) là:
Bất phương trình \({6^x} \ge b\) có tập nghiệm là \(\mathbb{R}\) khi:
Tập nghiệm của bất phương trình \({\left( {\frac{1}{\pi }} \right)^x} > {\left( {\frac{1}{\pi }} \right)^3}\) là:
Tập nghiệm của bất phương trình \(\log x \ge 2\) là:
Cho phương trình \({4^x} + {2^{x + 2}} - 5 = 0\). Đặt \(t = {2^x}\) ta được phương trình là: