Đề bài

Cho hình chóp S. ABCD có đáy ABCD là hình vuông và \(SA \bot \left( {ABCD} \right)\). Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB, SC và SD. Chứng minh rằng:

a) \(SC \bot \left( {AHK} \right)\).

b) \(HK \bot \left( {SAC} \right)\) và \(HK \bot AI\).

Phương pháp giải

+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).

+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Lời giải của GV Loigiaihay.com

a) Vì \(SA \bot \left( {ABCD} \right),DC \subset \left( {ABCD} \right) \Rightarrow SA \bot DC\)

Vì ABCD là hình vuông nên \(DC \bot AD\).

Mà SA và AD cắt nhau tại A và nằm trong mặt phẳng (SAD). Do đó, \(DC \bot \left( {SAD} \right)\)

Lại có: \(AK \subset \left( {SAD} \right) \Rightarrow DC \bot AK\). Mặt khác, \(AK \bot SD \Rightarrow AK \bot \left( {SDC} \right) \Rightarrow AK \bot SC\)

Vì \(SA \bot \left( {ABCD} \right),BC \subset \left( {ABCD} \right) \Rightarrow SA \bot BC\)

Vì ABCD là hình vuông nên \(BC \bot AB\).

Mà SA và AB cắt nhau tại A và nằm trong mặt phẳng (SAB). Do đó, \(BC \bot \left( {SAB} \right)\)

Lại có: \(AH \subset \left( {SAB} \right) \Rightarrow BC \bot AH\). Mặt khác, \(AH \bot SB \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)

Ta có: \(AK \bot SC\), \(AH \bot SC\) và AK và AH cắt nhau tại A nằm trong mặt phẳng (AHK) nên \(SC \bot \left( {AHK} \right)\).

b) Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow \left\{ \begin{array}{l}SA \bot AB\\SA \bot AD\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat {SAB} = {90^0}\\\widehat {SAD} = {90^0}\end{array} \right.\)

Tam giác SAB và tam giác SAD có: SA là cạnh chung, \(\widehat {SAB} = \widehat {SAD} = {90^0}\), \(AB = AD\).

Do đó, \(\Delta SAB = \Delta SAD\left( {c.g.c} \right) \Rightarrow SB = SD\), \(SH = SK\).

Suy ra: \(\frac{{SH}}{{SB}} = \frac{{SK}}{{SD}}\). Do đó, HK//BD (1)

Vì ABCD là hình vuông nên \(AC \bot BD\).

Vì \(SA \bot \left( {ABCD} \right),DB \subset \left( {ABCD} \right) \Rightarrow SA \bot DB\)

Mà SA và AC cắt nhau tại A và nằm trong mặt phẳng (SAC) nên \(DB \bot \left( {SAC} \right)\) (2)

Từ (1) và (2) ta có: \(HK \bot \left( {SAC} \right)\). Mà \(AI \subset \left( {SAC} \right)\), suy ra \(HK \bot AI\).

Các bài tập cùng chuyên đề

Bài 1 :

Cho hàm số: \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 3m} \right)} }}\).

a) Với \(m = \frac{1}{3}\), hãy tìm tập xác định của hàm số trên.

b) Tìm tất cả các giá trị của tham số m để hàm số trên có tập xác định là \(\mathbb{R}\).

Xem lời giải >>
Bài 2 :

Có bao nhiêu số tự nhiên x thỏa mãn bất phương trình \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{27}}\)?

Xem lời giải >>