Chiều cao của 50 học sinh lớp 11A được cho bởi bảng sau:
Mốt của mẫu số liệu này là:
Sử dụng kiến thức về tìm mốt của mẫu số liệu ghép nhóm: Để tìm mốt của mẫu số liệu ghép nhóm, ta làm như sau:
Bước 1: Xác định nhóm có tần số lớn nhất (gọi là nhóm chứa mốt), giả sử là nhóm j: \(\left[ {{a_j};{a_{j + 1}}} \right)\).
Bước 2: Mốt được xác định là: \({M_o} = {a_j} + \frac{{{m_j} - {m_{j - 1}}}}{{\left( {{m_j} - {m_{j - 1}}} \right) + \left( {{m_j} - {m_{j + 1}}} \right)}}.h\).
Trong đó, \({m_j}\) là tần số của nhóm j, (quy ước \({m_o} = {m_{k + 1}} = 0\)) và h là độ dài của nhóm.
Tần số lớn nhất là 14 nên nhóm chứa mốt là nhóm \(\left[ {150;155} \right)\). Ta có: \(j = 2;{a_2} = 150,{m_2} = 14\), \({m_1} = 7;{m_3} = 10,h = 5\). Do đó, \({M_o} = 150 + \frac{{14 - 7}}{{\left( {14 - 7} \right) + \left( {14 - 10} \right)}}.5 \approx 153,18\left( {cm} \right)\)
Đáp án : D
Các bài tập cùng chuyên đề
Chọn đáp án đúng
Một cung của đường tròn bán kính R và có số đo \(\alpha \) rad thì có độ dài là:
Nghiệm của phương trình \(\cos x = 1\) là:
Hàm số \(y = \tan x\) đồng biến trên:
Chọn đáp án đúng:
Trong các dãy số sau, dãy số nào là dãy số giảm?
Trong các dãy số sau, dãy số nào là cấp số nhân?
Dãy số nào dưới đây được viết dưới dạng hệ thức truy hồi?
Biết \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty ,\mathop {\lim }\limits_{n \to + \infty } {v_n} = a < 0\). Chọn đáp án đúng
Cấp số nhân lùi vô hạn \(\left( {{u_n}} \right)\) với công bội q, số hạng đầu \({u_1}\) thì có tổng là:
Giá trị của \(\mathop {\lim }\limits_{n \to + \infty } {\left( {\frac{2}{3}} \right)^n}\) bằng:
Giá trị của \(\mathop {\lim }\limits_{x \to \frac{1}{3}} \left( {3x + 2} \right)\) là:
Chọn đáp án đúng.
Cho bốn điểm A, B, C, D không đồng phẳng. Hình gồm bốn tam giác ABC, ACD, ABD và BCD được gọi là hình gì?
Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có bao nhiêu đường thẳng song song với đường thẳng đã cho?
Cho hình hộp ABCD. A’B’C’D’. Hình hộp này có bao nhiêu đường chéo?
Chọn đáp án đúng.
Chọn đáp án đúng:
Giá trị của biểu thức \(\cos \left( {\frac{\pi }{2} - \alpha } \right) - \sin \left( {\pi - \alpha } \right)\) bằng:
Cho tam giác ABC. Chọn đáp án đúng: