Phân thức nghịch đảo của phân thức \(\frac{{2x + 1}}{{x + 2}}\) với \(x \ne - \frac{1}{2};\,x \ne - 2\) là:
\(\frac{C}{D} \cdot \frac{D}{C} = 1\). Ta nói \(\frac{D}{C}\) là phân thức nghịch đảo của \(\frac{C}{D}\).
Phân thức nghịch đảo của phân thức \(\frac{{2x + 1}}{{x + 2}}\) là \(\frac{{x + 2}}{{2x + 1}}\).
Đáp án : B
Các bài tập cùng chuyên đề
Kết quả của phép nhân \(\frac{A}{B} \cdot \frac{C}{D}\) là:
Muốn chia phân thức \(\frac{A}{B}\) cho phân thức \(\frac{C}{D}\,\left( {\frac{C}{D} \ne 0} \right)\):
Thực hiện phép tính \(\frac{{3x + 12}}{{4x - 16}} \cdot \frac{{8 - 2x}}{{x + 4}}\)
Kết quả của phép chia \(\frac{{4x + 12}}{{{{\left( {x + 4} \right)}^2}}}:\frac{{3\left( {x + 3} \right)}}{{x + 4}}\) là:
Chọn câu sai:
Kết quả của phép chia \(\frac{{{x^3} + 1}}{{{x^2} + 2x + 1}}:\frac{{3{x^2} - 3x + 3}}{{{x^2} - 1}}\) có tử thức gọn nhất là:
Tìm \(A\) biết \(A:\frac{{x + 1}}{{{x^2} + x + 1}} = \frac{{{x^3} - 1}}{{{x^2} - 1}}\)
Tìm biểu thức \(A\) thỏa mãn biểu thức \(\frac{{x + 3y}}{{4x + 8y}} \cdot A = \frac{{{x^2} - 9{y^2}}}{{x + 2y}}\).
Cho biểu thức \(A = \frac{{5x + 10}}{{x - 6}}:\frac{{x - 2}}{{2x + 12}} \cdot \frac{{2x - 4}}{{{x^2} - 36}}\). Bạn An rút gọn được \(A = \frac{{10{{\left( {x - 2} \right)}^2}}}{{x - 6}}\), bạn Chi rút gọn được \(A = \frac{{10\left( {x + 2} \right)}}{{{{\left( {x - 6} \right)}^2}}}\). Chọn khẳng định đúng:
Tìm mối liên hệ giữa \(x\) và \(y\) biết \(\frac{{x + y}}{{{x^3} + {x^2}y + x{y^2} + {y^3}}}:\frac{{{x^2} + xy - 2{y^2}}}{{{x^4} - {y^4}}} = 2\).
Tìm \(x\) thỏa mãn \(\frac{{3x + 15}}{{{x^2} - 4}}:\frac{{x + 5}}{{x - 2}} = 1\,\left( {x \ne \pm 2;\,x \ne - 5} \right)\).
Tìm \(x\) nguyên để \(\frac{{{x^2} + 10x + 25}}{{x + 6}}:\left( {x + 5} \right)\) nguyên.
Cho \(x + y + z \ne 0\) và \(x = y + z\). Chọn đáp án đúng.
Cho \(A = \frac{{{x^2} + {y^2} + xy}}{{{x^2} - {y^2}}}:\frac{{{x^3} - {y^3}}}{{{x^2} + {y^2} - 2xy}}\) và \(B = \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}:\frac{{{x^2} - 2xy + {y^2}}}{{{x^4} - {y^4}}}\). Khi \(x + y = 5\) hãy so sánh \(A\) và \(B\).
Rút gọn biểu thức \(A = \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3{x^2} - 3x + 3}}{{{x^2} - 36}} + \frac{{x - 6}}{{{x^2} + 1}} \cdot \frac{{3x}}{{{x^2} - 36}}\) sau đó tính giá trị biểu thức \(A\) khi \(x = 994\).
Giá trị biểu thức \(A = \frac{{{5^2} - 1}}{{{3^2} - 1}}:\frac{{{9^2} - 1}}{{{7^2} - 1}}:\frac{{{{13}^2} - 1}}{{{{11}^2} - 1}} :...:\frac{{{{55}^2} - 1}}{{{{53}^2} - 1}}\) là:
Với \(x = 4,\,y = 1,\,z = - 2\) hãy tính giá trị biểu thức \(A = \frac{{2{x^3}{y^2}}}{{{x^2}{y^5}{z^2}}}:\frac{{5{x^2}y}}{{4{x^2}{y^5}}}:\frac{{ - 8{x^3}{y^2}{z^3}}}{{15{x^5}{y^2}}}\).
Cho \(a + b + c = 0\). Tính \(A = \frac{{4bc - {a^2}}}{{bc + 2{a^2}}} \cdot \frac{{4ca - {b^2}}}{{ca + 2{b^2}}} \cdot \frac{{4ab - {c^2}}}{{ab + 2{c^2}}}\).
Rút gọn biểu thức sau: \(A = \left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)...\left( {1 - \frac{1}{{{n^2}}}} \right)\).
Có bao nhiêu giá trị của \(x\) thỏa mãn \(\frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{{x^2} + 6x}} - \frac{{x + 3}}{{{x^2} - 1}}:\frac{{x + 4}}{{x - 4}} = 0\).