Đề bài

Gọi\({x_1};{x_2};{x_3}\) là các giá trị thỏa mãn \(4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\). Khi đó\({x_1}\; + {x_2}\; + {x_3}\) bằng

  • A.
    \( - 3\).
  • B.
    \( - 1\).
  • C.
    \(\frac{{ - 5}}{3}\).
  • D.
    \(1\).
Phương pháp giải
Sử dụng đẳng thức đặc biệt \({a^3}\; + {b^3}\; + {c^3}\; - 3abc = \;\left( {a + b + c} \right)\left( {{a^2}\; + {b^2}\; + {c^2}\; - ab - bc - ac} \right)\);

Ta thấy a + b + c = 0 nên \({a^3} + {b^3} + {c^3} = 3abc\).

Lời giải của GV Loigiaihay.com

\(\begin{array}{l}4{\left( {2x-5} \right)^2}\;-9{(4{x^2}\;-25)^2}\; = 0\\\begin{array}{*{20}{l}}{ \Leftrightarrow 4{{\left( {2x-5} \right)}^2}\;-9{{[{{\left( {2x} \right)}^2}\;-{5^2}]}^2}\; = 0}\\{ \Leftrightarrow 4{{\left( {2x-5} \right)}^2}\;-9{{\left[ {\left( {2x-5} \right)\left( {2x + 5} \right)} \right]}^2}\; = 0}\\{ \Leftrightarrow 4{{\left( {2x-5} \right)}^2}\;-9{{\left( {{\rm{2x }}-5} \right)}^2}{{\left( {2x + 5} \right)}^2}\; = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}[4-9{{\left( {2x + 5} \right)}^2}] = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}[4-{{\left( {3\left( {2x + 5} \right)} \right)}^2}] = 0}\\{ \Leftrightarrow {{\left( {2x-5} \right)}^2}({2^2}\;-{{\left( {6x + 15} \right)}^2}) = 0}\\{ \Leftrightarrow {{\left( {3x-5} \right)}^2}\left( {2 + {\rm{ 6}}x + 15} \right)\left( {2-{\rm{ 6}}x-15} \right) = 0}\\\begin{array}{l} \Leftrightarrow {\left( {3x-5} \right)^2}\left( {6x + 17} \right)\left( { - 6x-13} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{5}{3}\\x = \frac{{ - 17}}{6}\\x = \frac{{13}}{6}\end{array} \right.\end{array}\end{array}\end{array}\)

Suy ra \({x_1} + {x_2} + {x_3} = \frac{5}{3} - \frac{{17}}{6} + \frac{{13}}{6} = \frac{{10 - 17 + 13}}{6} = 1\)

Đáp án : D

Các bài tập cùng chuyên đề

Bài 1 :

Giá trị thỏa mãn \(2{x^2}\;-4x + 2 = 0\)

Xem lời giải >>
Bài 2 :

Đa thức \(4{b^2}{c^2}-{\left( {{c^2} + {b^2}-{a^2}} \right)^2}\) được phân tích thành

Xem lời giải >>
Bài 3 :

Phân tích đa thức thành nhân tử: \({x^2} + 6x + 9\;\)

Xem lời giải >>
Bài 4 :

Tính giá trị biểu thức \(P = {x^3}-3{x^2} + 3x\) với \(x = 1001\)

Xem lời giải >>
Bài 5 :

Tìm x, biết \(2 - 25{x^2} = 0\)

Xem lời giải >>
Bài 6 :

Đa thức \({x^6}-{y^6}\) được phân tích thành

Xem lời giải >>
Bài 7 :

Tính nhanh biểu thức \({37^2} - {13^2}\)

Xem lời giải >>
Bài 8 :

Phân tích đa thức \({x^2} - 2xy + {y^2}{\rm{ - }}81\) thành nhân tử:

Xem lời giải >>
Bài 9 :

Tính nhanh giá trị của biểu thức \({x^2} + 2x + 1 - {y^2}\) tại x = 94,5 và y = 4,5.

Xem lời giải >>
Bài 10 :

Chọn câu sai.

Xem lời giải >>
Bài 11 :

Cho \({\left( {3{x^2} + 3x - 5} \right)^2} - {\left( {3{x^2} + 3x + 5} \right)^2} = mx(x + 1)\) với \(m \in \mathbb{R}\). Chọn câu đúng

Xem lời giải >>
Bài 12 :

Cho \(\left| x \right| < 3\). Khẳng định nào sau đây đúng khi nói về giá trị của biểu thức \(A = {x^4} + 3{x^3} - 27x - 81\)

Xem lời giải >>
Bài 13 :

Cho \({(3{x^2} + 6x - 18)^2} - {(3{x^2} + 6x)^2} = m(x + n)(x - 1)\). Khi đó \(\frac{m}{n}\) bằng:

Xem lời giải >>
Bài 14 :

Cho\(x = 20-y\). Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức \(B = {x^3}\; + 3{x^2}y + 3x{y^2}\; + {y^3}\; + {x^2}\; + 2xy + {y^2}\)

Xem lời giải >>
Bài 15 :

Hiệu bình phương các số lẻ liên tiếp thì luôn chia hết cho

Xem lời giải >>
Bài 16 :

Giá trị của x thỏa mãn \(5{x^2} - 10x + 5 = 0\) là

Xem lời giải >>
Bài 17 :

Có bao nhiêu giá trị của x thỏa mãn\({\left( {2x-5} \right)^2}\;-4{\left( {x-2} \right)^2}\; = 0\)?

Xem lời giải >>
Bài 18 :

Chọn câu đúng nhất:

Xem lời giải >>
Bài 19 :

Với a3 + b3 + c3 = 3abc thì

Xem lời giải >>