Cho hình vẽ:
Chọn đáp án đúng.
Tam giác ADO và tam giác ECO có: \(\widehat {DAO} = \widehat {CEO} = {90^0},\widehat {AOD} = \widehat {COE}\) (hai góc đối đỉnh)
Do đó, \(\Delta ADO \backsim \Delta ECO \Rightarrow \frac{{AD}}{{EC}} = \frac{{DO}}{{CO}} \Rightarrow \frac{4}{x} = \frac{5}{6} \Rightarrow x = 4,8\)
Áp dụng định lý Pytago vào tam giác ADO vuông tại A ta có:
\(A{D^2} + A{O^2} = O{D^2}\) \( \Rightarrow A{O^2} = D{O^2} - A{D^2} = 9 \Rightarrow AO = 3\)
Tam giác CEO và tam giác CAB có: \(\widehat {CEO} = \widehat {CAB} = {90^0},\widehat {C}\;chung\)
Do đó, \(\Delta CEO \backsim \Delta CAB \Rightarrow \frac{{CO}}{{CB}} = \frac{{CE}}{{CA}} \Rightarrow \frac{{CO}}{{EC + EB}} = \frac{{CE}}{{CO + AO}} \Rightarrow \frac{6}{{4,8 + y}} = \frac{{4,8}}{{6 + 3}} \Rightarrow y = 6,45\)
Đáp án : B
Các bài tập cùng chuyên đề
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\frac{{AB}}{{DE}} = \frac{{BC}}{{FE}}\)
Chọn đáp án đúng
Hai tam giác vuông đồng dạng với nhau khi:
Cho hai hình sau:
Chọn đáp án đúng.
Cho tam giác ABC vuông tại A có: \(AB = 3cm,BC = 5cm\) và tam giác MNP vuông tại M có \(MN = 6cm,NP = 10cm.\) Khi đó,
Cho hai tam giác vuông ABC và ADE có các kích thước như hình dưới. Khẳng định nào sau đây đúng?
Cho tứ giác ABCD có \(AB = 9cm,\;AC = 6cm,AD = 4,\widehat {ADC} = \widehat {ACB} = {90^0}\) (như hình vẽ)
Khẳng định nào sau đây đúng?
Cho hình vẽ sau:
Khẳng định nào sau đây là đúng?
Cho tam giác ABC vuông tại A, \(AC = 4cm,BC = 6cm.\) Kẻ tia Cx vuông góc với BC (tia Cx và điểm A nằm khác phía so với đường thẳng BC). Lấy trên tia Cx điểm D sao cho \(BD = 9cm.\) Số đo góc ABD bằng bao nhiêu độ?
Tam giác ABH vuông tại H có \(AB = 20cm,BH = 12cm.\) Trên tia đối của tia HB lấy điểm C sao cho \(AC = \frac{5}{3}AH.\) Khi đó, số đo góc BAC bằng:
Cho tam giác ABC cân tại A, đường cao AH và M là trọng tâm của tam giác ABC; tam giác A’B’C’ cân tại A’, đường cao A’H và M’ là trọng tâm tâm của tam giác A’B’C’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{AB}}{{A'B'}} = 3.\) Chọn đáp án đúng.
Cho tam giác ABC vuông tại A, \(AC = 4cm,BC = 6cm.\)Kẻ tia Cx vuông góc với BC (tia Cx và điểm A nằm khác phía so với đường thẳng BC). Lấy trên tia Cx điểm D sao cho \(BD = 9cm.\) Diện tích tam giác ABD bằng:
Tam giác ABH vuông tại H có \(AB = 25cm,BH = 15cm.\) Trên tia đối của tia HB lấy điểm C sao cho \(AC = \frac{5}{3}AH.\) Chu vi tam giác AHC là:
Cho hình vẽ:
Chu vi tam giác DMC là:
Cho tam giác ABC cân tại A có chu vi bằng 60cm và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{BC}}{{B'C'}} = \frac{3}{2}\). Chu vi tam giác A’B’C’ là:
Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{CH}}{{C'H'}} = \frac{{BC}}{{B'C'}}\). Biết rằng \(\widehat {BAC} = 4\widehat {A'C'B'}.\) Chọn đáp án đúng.
Cho điểm B nằm trên đoạn thẳng AC sao cho \(AB = 6cm,BC = 24cm.\) Vẽ về một phía của AC tia Ax và Cy vuông góc với AC. Trên tia Ax lấy điểm E sao cho \(EB = 10cm,\) trên tia Cy lấy điểm D sao cho \(BD = 30cm.\)
Cho các khẳng định sau:
1. Tam giác EBD là tam giác nhọn.
2. Diện tích tam giác EBD bằng \(150c{m^2}\).
3. Chu vi tam giác EBD bằng 60cm.
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Cho hai hình chữ nhật ABCD và A’B’C’D’ thỏa mãn \(AC = 3AB,B'D' = 3A'B'\)
Nếu \(AB = 2A'B'\) và diện tích hình chữ nhật ABCD là \(12{m^2}\) thì diện tích hình chữ nhật A’B’C’D’ là bao nhiêu?
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}\)
Chọn đáp án đúng
Hai tam giác vuông đồng dạng với nhau khi:
Cho hình vẽ sau:
Chọn đáp án đúng.