Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I, J lần lượt là trung điểm SA, SC. Đường thẳng IJ song song với đường thẳng nào trong các đường thẳng sau?
Vẽ hình và sử dụng tính chất đường trung bình của tam giác để chứng minh.
Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
Vì I, J lần lượt là trung điểm SA, SC.
Suy ra, IJ là đường trung bình tam giác SAC nên IJ // AC.
Đáp án : C
Các bài tập cùng chuyên đề
Trong các phát biểu sau, phát biểu nào đúng?
Cho hình tứ diện ABCD. Phát biểu nào sau đây là đúng ?
Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?
Trong không gian, cho hai đường thẳng a và b chéo nhau. Một đường thẳng c song song với a. Khẳng định nào sau đây là đúng?
Cho ba mặt phẳng phân biệt cắt nhau từng đôi một theo ba giao tuyến d1, d2, d3 trong đó d1 song song với d2. Khi đó vị trí tương đối của d2 và d3 là?
Cho hai đường thẳng a và b. Điều kiện nào sau đây đủ để kết luận a và b chéo nhau?
Trong không gian, cho 3 đường thẳng a, b, c, biết a // b, a và c chéo nhau. Khi đó hai đường thẳng b và c
Cho đường thẳng a nằm trên mp (P), đường thẳng b cắt (P) tại O và O không thuộc a. Vị trí tương đối của a và b là:
Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
Cho hai đường thẳng chéo nhau a, b và điểm M không thuộc a, cũng không thuộc b. Có nhiều nhất bao nhiêu đường thẳng đi qua M và đồng thời cắt cả a và b?
Cho hình chóp S.ABC và G, K lần lượt là trọng tâm tam giác SAB, SBC. Khẳng định nào sau đây là đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G1, G2 lần lượt là trọng tâm của \(\Delta SAB,\Delta SAD\). Khi đó G1G2 song song với đường thẳng nào dưới đây?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Gọi M, N lần lượt là trung điểm AB, CD và G1, G2 lần lượt là trọng tâm của \(\Delta SAB,\Delta SCD\). Trong các đường thẳng sau đây, đường thẳng nào không song song với G1G2?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi \(A',B',C',D'\) lần lượt là trung điểm của các cạnh \(SA,SB,SC,SD\). Đường thẳng không song song với \(A'B'\) là:
Cho tứ diện ABCD. Gọi M, N lần lượt là trọng tâm của \(\Delta ABC,\Delta ABD\). Khẳng định nào sau đây đúng?
Cho tứ diện ABCD. Trên các cạnh AB, AD lần lượt lấy các điểm M, N sao cho \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AD}} = \frac{1}{3}\). Gọi P, Q lần lượt là trung điểm của các cạnh CD, CB. Khẳng định nào sau đây đúng?
Cho hình chóp S.ABC. Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,AC\). Giao tuyến của hai mặt phẳng (SMN) và (SBC) là một đường thẳng song song với đường thẳng nào sau đây?
Cho tứ diện ABCD. Gọi \(M,N,P,Q\) lần lượt là trung điểm của các cạnh \(AC,BC,BD,AD\). Tìm điều kiện để MNPQ là hình thoi?
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Gọi \(M,N\) lần lượt là trọng tâm của \(\Delta SAB,\Delta SCD\). Gọi I là giao điểm của các đường thẳng BM và CN. Khi đó tỉ số \(\frac{{SI}}{{CD}}\) bằng?
Cho tứ diện ABCD. Lấy ba điểm \(P,Q,R\) lần lượt trên ba cạnh \(AB,CD,BC\) sao cho PR // AC và CQ=2QD. Gọi S là giao điểm của AD với mặt phẳng (PQR). Khi đó tỉ số \(\frac{{AD}}{{DS}}\) bằng?