Một con xúc xắc được gieo ba lần. Kết quả các lần thứ nhất, thứ hai, thứ ba được ghi lại lần lượt là \(x,y,z\) . Cho biết \(x + y = z.\) Tính xác suất thực nghiệm của khả năng ít nhất một trong các số \(x,y,z\) là 2.
B1: Đếm các trường hợp các cặp (x, y, z) thỏa mãn \(x + y = z.\)
B2: Đếm các trường hợp thỏa mãn ít nhất một trong các số \(x,y,z\) là 2.
B3: Tính xác suất thực nghiệm.
Nếu \(z = 2\) thì \(\left( {x,y,z} \right) = \left( {1;1;2} \right)\)
Nếu \(z = 3\) thì
\((x,y,z) = \left( {1;2;3} \right) = \left( {2;1;3} \right)\)
Nếu \(z = 4\) thì
\(\left( {x,y,z} \right) = \left( {1;3;4} \right) = \left( {3;1;4} \right) = \left( {2;2;4} \right)\)
Nếu \(z = 5\) thì
\(\left( {x,y,z} \right) = \left( {1;4;5} \right) = \left( {2;3;5} \right) = \left( {3;2;5} \right) = \left( {4;1;5} \right)\)
Nếu \(z = 6\) thì \(\left( {x,y,z} \right) = \left( {1;5;6} \right) = \left( {2;4;6} \right)\)
\( = \left( {3;3;6} \right) = \left( {4;2;6} \right) = \left( {5;1;6} \right)\)
Trong 15 trường hợp có 8 trường hợp có ít nhất một số là 2.
Do đó xác suất thực nghiệm của khả năng xuất hiện ít nhất một trong các số \(x,y,z\) là 2 là: \(\frac{8}{{15}}\)
Đáp án : A
Các bài tập cùng chuyên đề
Xác xuất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện là \(n(A)\) thì \(n(A)\) được gọi là:
Xác suất thực nghiệm càng gần xác suất lí thuyết khi?
Khi nói về xác suất thực nghiệm và xác suất lí thuyết. Chọn câu trả lời sai
Nếu tung một đồng xu 22 lần liên tiếp; có 13 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu??
Hùng tập ném bóng vào rổ. Khi thực hiện ném \(100\) lần thì có \(35\) lần bóng vào rổ. Tính xác suất thực nghiệm của sự kiện ném bóng vào rổ
Trong trò chơi gieo xúc xắc, khi số lần gieo xúc xắc ngày càng lớn thì xác xuất thực nghiệm của biến cố: “Mặt xuất hiện của xúc xắc là mặt k chấm” ngày càng gần với số thực nào?
Trong trò chơi bánh xe quay số. Bánh xe số có \(20\) nấc điểm: \(5\) ; \(10\) ; \(15\) ; \(20\) ; …; \(100\) với các vạch chia đều nhau và giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau. Trong mỗi lượt chơi có hai người tham gia, mỗi người được quay một lần và điểm của người chơi là điểm quay được. Người nào có số điểm cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. Nam và Bình cùng tham gia một lượt chơi. Nam chơi trước và được \(85\) điểm. Hãy tính xác suất thực nghiệm của sự kiện Bình thắng cuộc ở lượt chơi này.
Cho dãy số liệu về số lượng đạt tuần học tốt của các lớp trong một năm học của một trường THCS như sau:
Xác suất thực nghiệm của sự kiện lớp đạt 7 tuần học tốt là bao nhiêu?
Tỉ lệ số học sinh đạt học sinh giỏi trong một lớp là \(15\% \) . Gặp ngẫu nhiên một bạn trong lớp. Tính xác suất của biến cố : “Học sinh đó đạt học sinh giỏi”
Trong buổi thực hành môn Khoa học tự nhiên đo thể tích của vật thể không xác định được hình dạng, lớp 6A có 40 học sinh thực hiện phép đo thì có 35 học sinh thực hiện không thành công. Em hãy tính xác suất thực nghiệm của sự kiện: “Phép đo được thực hiện thành công.”
Gieo một xúc xắc \(10\) lần liên tiếp, bạn Cường có kết quả như sau:
Tính xác suất thực nghiệm xuất hiện mặt 1 chấm.
Một hộp chứa 3 viên bi xanh, 2 viên bi đỏ, 4 viên bi vàng. Lấy ngẫu nhiên 1 viên bi. Xác suất để viên bi lấy được là viên bi vàng là:
Bạn Hoàng Linh tung đồng xu 50 lần thấy có 30 lần xuất hiện mặt \(S\) còn bạn Tú Anh tung 100 lần và thấy có 55 lần xuất hiện mặt \(S\). Bạn Hoàng Linh nói xác suất thực nghiệm xuất hiện mặt \(S\) là \(\frac{{30}}{{50}}\); còn bạn Tú Anh bảo rằng xác suất thực nghiệm xuất hiện mặt \(S\) là \(\frac{{55}}{{100}}\). Vậy trong hai bạn thì bạn nào nói đúng ?
Trong trò chơi tung đồng xu, khi số lần tung đồng xu ngày càng lớn thì xác suất thực nghiệm của biến cố “Mặt xuất hiện của đồng xu là mặt S” ngày càng gần với số thực nào?
Khi chơi cá ngựa, thay vì gieo một con xúc xắc ta gieo cả hai con xúc xắc cùng một lúc thì điểm thấp nhất là 2, cao nhất là 12. Các điểm khác là 3; 4; 5;...; 11. Điểm nào có khả năng xuất hiện nhiều nhất và tính xác suất thực nghiệm xuất hiện điểm đó.
Trong một hộp kín có ba quả bóng: một đỏ (Đ), một xanh (X), một vàng (V). Lấy ngẫu nhiên một bóng, xem màu, ghi kết quả rồi trả bóng vào hộp. Lặp lại các thao tác trên nhiều lần, kết quả ghi trong bảng sau:
Khả năng chọn được bóng của màu nào cao hơn?
Nhà bếp của công nhân một xí nghiệp mua 40 khay trứng gà. Kiểm tra thì thấy ba khay, mỗi khay có ít nhất một quả trứng bị vỡ. Trong một tháng nhà bếp này mua 360 khay trứng. Hãy dự đoán xem có bao nhiêu khay có trứng vỡ?
Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa chọn ngẫu nhiên cho ở bảng sau:
Tính xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên được loại khá trở lên ở cả 2 môn
Gieo một con xúc xắc 6 mặt 50 lần ta được kết quả như sau:
Hãy tính xác suất thực nghiệm của biến cố: “Gieo được mặt có số chẵn chấm trong 50 lần gieo trên”.