Đề bài

Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)

  • A.
    \(A = 1\)
  • B.
    \(A = 0\)
  • C.
    \(A = \frac{1}{2}\)
  • D.
    \(A = \frac{{99}}{{100}}\)

Đáp án : D

Phương pháp giải :

Sử dụng công thức \(\frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{n} - \frac{1}{{n + 1}}\)

Lời giải chi tiết :

\(\begin{array}{l}A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\\ = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{2} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + ... + \left( {\frac{1}{{99}} - \frac{1}{{100}}} \right)\\ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{99}} - \frac{1}{{100}}\\ = 1 - \frac{1}{{100}} = \frac{{99}}{{100}}\end{array}\)

Quảng cáo

Các bài tập cùng chuyên đề

Bài 1 :

Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:

Xem lời giải >>
Bài 2 :

Chọn khẳng định đúng?

Xem lời giải >>
Bài 3 :

Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:

Xem lời giải >>
Bài 4 :

Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne  - 2} \right)\)

Xem lời giải >>
Bài 5 :

Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)

Xem lời giải >>
Bài 6 :

Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?

Xem lời giải >>
Bài 7 :

Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:

Xem lời giải >>
Bài 8 :

Chọn câu đúng?

Xem lời giải >>
Bài 9 :

Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)

Xem lời giải >>
Bài 10 :

Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:

Xem lời giải >>