Phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính nào dưới đây?
Muốn trừ hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi trừ các phân thức có cùng mẫu thức vừa tìm được.
A.
\(\begin{array}{l}\frac{{x - 1}}{{x + 1}} - \frac{{x + 1}}{{x - 1}} = \frac{{{{\left( {x - 1} \right)}^2} - {{\left( {x + 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} - 2x + 1 - {x^2} - 2x - 1}}{{{x^2} - 1}} = \frac{{ - 4x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
B.
\(\begin{array}{l}\frac{{2x - 1}}{{x + 1}} - \frac{{2x + 1}}{{x - 1}} = \frac{{\left( {2x - 1} \right)\left( {x - 1} \right) - \left( {2x + 1} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} - x - 2x + 1} \right) - \left( {2{x^2} + x + 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} - 3x + 1} \right) - \left( {2{x^2} + 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} - 3x + 1 - 2{x^2} - 3x - 1}}{{{x^2} - 1}} = \frac{{ - 6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
C.
\(\begin{array}{l}\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}} = \frac{{{{\left( {x + 1} \right)}^2} - {{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}}\\ = \frac{{\left( {{x^2} + 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{{x^2} + 2x + 1 - {x^2} + 2x - 1}}{{{x^2} - 1}} = \frac{{4x}}{{{x^2} - 1}}\end{array}\)
D.
\(\begin{array}{l}\frac{{2x + 1}}{{x - 1}} - \frac{{2x - 1}}{{x + 1}} = \frac{{\left( {2x + 1} \right)\left( {x + 1} \right) - \left( {2x - 1} \right)\left( {x - 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ = \frac{{\left( {2{x^2} + x + 2x + 1} \right) - \left( {2{x^2} - x - 2x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{\left( {2{x^2} + 3x + 1} \right) - \left( {2{x^2} - 3x + 1} \right)}}{{{x^2} - 1}}\\ = \frac{{2{x^2} + 3x + 1 - 2{x^2} + 3x - 1}}{{{x^2} - 1}} = \frac{{6x}}{{{x^2} - 1}} \ne \frac{{4x}}{{{x^2} - 1}}\end{array}\)
Vậy phân thức \(\frac{{4x}}{{{x^2} - 1}}\) là kết quả của phép tính \(\frac{{x + 1}}{{x - 1}} - \frac{{x - 1}}{{x + 1}}\)
Đáp án : C
Các bài tập cùng chuyên đề
Với \(B \ne 0\), kết quả của phép cộng \(\frac{A}{B} + \frac{C}{B}\) là:
Chọn khẳng định đúng?
Phân thức đối của phân thức \(\frac{{2x - 1}}{{x + 1}}\) là:
Thực hiện phép tính sau: \(\frac{{{x^2}}}{{x + 2}} - \frac{4}{{x + 2}}\,\left( {x \ne - 2} \right)\)
Tìm phân thức \(A\) thỏa mãn \(\frac{{x + 2}}{{3x + 5}} - A = \frac{{x - 1}}{2}\)
Phép tính \(\frac{{3x + 21}}{{{x^2} - 9}} + \frac{2}{{x + 3}} - \frac{3}{{x - 3}}\) có kết quả là:
Chọn câu đúng?
Rút gọn biểu thức sau: \(A = \frac{{2{x^2} + x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + x + 1}} - \frac{7}{{x - 1}}\)
Giá trị của biểu thức \(A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + 3}}{{8{x^2} - 4x}}\) với \(x = \frac{1}{4}\) là:
Với \(x = 2023\) hãy tính giá trị của biểu thức: \(B = \frac{1}{{x - 23}} - \frac{1}{{x - 3}}\)
Tìm \(x\), biết \(\frac{2}{{x + 3}} + \frac{3}{{{x^2} - 9}} = 0\,\left( {x \ne \pm 3} \right)\)
Tính tổng sau: \(A = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\)
Cho \(x;\,y;\,z\, \ne \pm 1\) và \(xy + yz + x{\rm{z}} = 1\). Chọn câu đúng?
Tìm các số \(A;\,B;\,C\) để \(\frac{{2{x^2} - 3x + 12}}{{{{\left( {x + 3} \right)}^3}}} = \frac{A}{{{{\left( {x + 3} \right)}^3}}} + \frac{B}{{{{\left( {x + 3} \right)}^2}}} + \frac{C}{{x + 3}}\)
Cho \(3y - x = 6\). Tính giá trị của biểu thức \(A = \frac{x}{{y - 2}} + \frac{{2x - 3y}}{{x - 6}}\).
Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \(A = \frac{{10}}{{\left( {x + 2} \right)\left( {3 - x} \right)}} - \frac{{12}}{{\left( {3 - x} \right)\left( {3 + x} \right)}} - \frac{1}{{\left( {x + 3} \right)\left( {x + 2} \right)}}\) tại \(x = - \frac{3}{4}\)?
Rút gọn biểu thức \(A = \frac{{ab}}{{\left( {b - c} \right)\left( {c - a} \right)}} + \frac{{bc}}{{\left( {c - a} \right)\left( {a - b} \right)}} + \frac{{ac}}{{\left( {a - b} \right)\left( {b - c} \right)}}\) ta được:
Tìm giá trị nguyên của \(x\) để biểu thức \(A = \frac{{6{x^2} + 8x + 7}}{{{x^3} - 1}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\) có giá trị là một số nguyên.
Có bao nhiêu giá trị của \(x\) để biểu thức \(A = \frac{3}{{x - 3}} - \frac{{{x^2}}}{{4 - {x^2}}} - \frac{{4x - 12}}{{{x^3} - 3{x^2} - 4x + 12}}\) có giá trị là một số nguyên?
Rút gọn biểu thức \(A = \frac{3}{{2{x^2} + 2x}} + \frac{{\left| {2x - 1} \right|}}{{{x^2} - 1}} - \frac{2}{x}\) biết \(x > \frac{1}{2};\,x \ne 1\):