Tính diện tích xung quanh của hình chóp dưới đây.
Sử dụng kiến thức về hình chóp đều, định lý Pythagore và công thức tính diện tích xung quanh của hình chóp đều.
Vì S.ABC là hình chóp tam giác đều nên mặt bên SAB là tam giác cân tại S => SH là đường cao đồng thời là trung tuyến của tam giác SAB \( \Rightarrow AH = HB = \frac{{AB}}{2} = \frac{{12}}{2} = 6cm\)
Xét tam giác vuông SHA có: \(SH = \sqrt {S{A^2} - H{A^2}} = \sqrt {{{10}^2} - {6^2}} = 8cm\)
Nửa chu vi đáy của hình chóp: \(p = \frac{{12 + 12 + 12}}{2} = 18cm\)
Vậy diện tích xung quanh của hình chóp S.ABC là \({S_{xq}} = p.d = 18.6 = 108c{m^2}\)
Đáp án : A
Các bài tập cùng chuyên đề
Các mặt bên của hình chóp tam giác đều là hình gì?
Đường cao của hình chóp tam giác đều là?
Diện tích xung quanh của hình chóp tam giác đều bằng:
Cho hình chóp tam giác đều có diện tích đáy S, chiều cao h. Khi đó thể tích V của hình chóp được tính bằng công thức:
Trung đoạn của hình chóp tam giác đều S.ABC là:
Cho hình chóp tam giác đều có diện tích đáy là \(6c{m^2}\), chiều cao của hình chóp là \(8cm\). Tính thể tích của hình chóp đó.
Cho khối chóp tam giác đều, nếu tăng cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp sẽ:
Cho hình chóp tam giác đều S.ABC có các mặt là các tam giác đều. Biết diện tích của mặt đáy bằng \(10c{m^2}\). Tính diện tích xung quanh hình chóp.
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy là 4cm, độ dài trung đoạn bằng 5cm. Tính diện tích xung quanh hình chóp.
Cho hình chóp tam giác đều chiều cao h, thể tích V. Diện tích đáy S bằng:
Hình chóp tam giác đều có mấy mặt:
Trung đoạn của hình chóp tam giác đều trong hình bên là:
Số đo mỗi góc ở đỉnh của mặt đáy hình chóp tam giác đều là?
Cho hình chóp tam giác đều S.ABC biết SA = 4cm, AB = 3cm, chọn phát biểu đúng?
Cho hình chóp tam giác đều có nửa chu vi đáy là \(12cm\), độ dài trung đoạn là \(4cm\). Tính diện tích xung quanh của hình chóp đó.
Cho hình chóp tam giác đều S. ABC có diện tích đáy là 5, chiều cao h của hình chóp có số đo bằng số đo cạnh của hình vuông có diện tích \(\frac{9}{4}c{m^2}\). Thể tích của khối chóp đó là bao nhiêu?
Cho hình chóp tam giác đều S.ABC có chu vi đáy bằng 9cm, chiều cao mặt đáy bằng \(\frac{{3\sqrt 3 }}{2}cm\), chiều cao hình chóp bằng \(\frac{3}{2}\)độ dài cạnh đáy. Thể tích V của khối chóp S.ABC.
Cho hình chóp tam giác đều S.ABC có H là trọng tâm mặt đáy ABC, biết chiều cao hình chóp SH = a, độ dài \(AH = \frac{{a\sqrt 3 }}{3}\), cạnh đáy có độ dài bằng a. Thể tích V của khối chóp S.ABC theo a.
Cho hình chóp tam giác đều S.ABC có độ dài tất cả các cạnh bằng 4cm. Gọi I. H lần lượt là trung điểm cạnh AB, SC. Tính độ dài IH
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng 2a. Gọi I là trung điểm cạnh BC. Tính thể tích V của khối chóp S.ABI.