Đề bài

Với giá trị nào của \(a\) thì dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{an - 1}}{{n + 2}},\forall n \in {\mathbb{N}^*}\) là dãy số tăng?

  • A.
    \(a > 2\).
  • B.
    \(a >  - \frac{1}{2}\).
  • C.
    \(a <  - \frac{1}{2}\).
  • D.
    \(a < 2\).
Phương pháp giải

Bước 1: Tìm \({u_{n + 1}}\).

Bước 2: Xét hiệu \({u_{n + 1}} - {u_n}\).

Bước 3:

– Để \(\left( {{u_n}} \right)\) là dãy số tăng thì ta tìm \(a\) sao cho \({u_{n + 1}} - {u_n} > 0,\forall n \in {\mathbb{N}^*}\).

– Để \(\left( {{u_n}} \right)\) là dãy số giảm thì ta tìm \(a\) sao cho \({u_{n + 1}} - {u_n} < 0,\forall n \in {\mathbb{N}^*}\).

Lời giải của GV Loigiaihay.com

Ta có: \({u_{n + 1}} = \frac{{a\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 2}} = \frac{{na + a - 1}}{{n + 1 + 2}} = \frac{{na + a - 1}}{{n + 3}}\)

Xét hiệu:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{na + a - 1}}{{n + 3}} - \frac{{na - 1}}{{n + 2}} = \frac{{\left( {na + a - 1} \right)\left( {n + 2} \right) - \left( {na - 1} \right)\left( {n + 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\\ = \frac{{\left( {{n^2}a + na - n + 2na + 2a - 2} \right) - \left( {{n^2}a - n + 3na - 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\\ = \frac{{{n^2}a + na - n + 2na + 2a - 2 - {n^2}a + n - 3na + 3}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{{2a + 1}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\end{array}\)

Để \(\left( {{u_n}} \right)\) là dãy số tăng thì:

\({u_{n + 1}} - {u_n} > 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{2{\rm{a}} + 1}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} > 0 \Leftrightarrow 2{\rm{a}} + 1 > 0 \Leftrightarrow a >  - \frac{1}{2}\)

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Cho dãy số \(\left( {{u_n}} \right)\) được xác định như sau: \({u_1} = 1\) và \({u_{n + 1}} = 3 - {u_n}\) với \(n \ge 1.\) Số hạng \({u_2}\) bằng

Xem lời giải >>
Bài 2 :

Mệnh đề nào sau đây sai?

Xem lời giải >>
Bài 3 :

Cho dãy số \(\left( {{u_n}} \right)\). Khẳng định nào sau đây đúng?

Xem lời giải >>
Bài 4 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \({u_n} = \frac{n}{{n + 1}}\) với \(n \ge 1\). Số hạng thứ 10 của dãy số là:

Xem lời giải >>
Bài 5 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 10{u_n} - 9n\end{array} \right.\) với \(n \ge 1\). Ba số hạng đầu của dãy số là:

Xem lời giải >>
Bài 6 :

Cho tổng \({S_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{n.\left( {n + 1} \right)}}\) với \(n \in {\mathbb{N}^*}\). Lựa chọn đáp án đúng.

Xem lời giải >>
Bài 7 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi công thức \({u_n} = \frac{{n - 1}}{{2n + 1}}\). Dãy số \(\left( {{u_n}} \right)\) là:

Xem lời giải >>
Bài 8 :

Dãy số nào trong các dãy số sau là dãy số bị chặn?

Xem lời giải >>
Bài 9 :

Trong các dãy số sau đây, với giả thiết \(n \in {\mathbb{N}^*}\):

\({u_n} = {\left( {\frac{2}{3}} \right)^n};{v_n} = {\left( {\frac{4}{3}} \right)^n};{q_n} = \sin n + \cos n\)

Số dãy số bị chặn là:

Xem lời giải >>
Bài 10 :

Trong các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau, dãy số nào  bị chặn trên:

Xem lời giải >>
Bài 11 :

Cho dãy số có các số hạng đầu là: 5; 10; 15; 20; 25; … Số hạng tổng quát của dãy số này là:

Xem lời giải >>
Bài 12 :

Tìm công thức tính số hạng tổng quát \({u_n}\) theo \(n\) của các dãy số sau : \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = {u_n} + 2\end{array} \right.\)

Xem lời giải >>
Bài 13 :

Dãy số \(\left( {{u_n}} \right)\) được xác định bởi công thức \({u_n} = 3 - 2n\) với \(n \in {\mathbb{N}^*}\). Tính tổng \(S = {u_1} + {u_2} + ... + {u_{10}}\).

Xem lời giải >>
Bài 14 :

Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) biết: \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}}\).

Xem lời giải >>
Bài 15 :

Cho dãy số \(\left( {{u_n}} \right)\) có tổng của \(n\) số hạng đầu cho bởi công thức \({S_n} = {3^n} - 1\). Khẳng định nào sau đây sai?

Xem lời giải >>
Bài 16 :

Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = \sqrt {2023} }\\{{u_n} = \sqrt {2023 + {u_{n - 1}}} }\end{array}} \right.\). Nhận định nào dưới đây là đúng?

Xem lời giải >>
Bài 17 :

Cho dãy số \(\left( {{u_n}} \right)\) với \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = 2{u_n} + 3\end{array} \right.,\forall n \in {\mathbb{N}^*}\). Tìm số hạng tổng quát \({u_n}\) của dãy số.

Xem lời giải >>
Bài 18 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \({u_n} = 2023\sin \frac{{n\pi }}{2} + 2024\cos \frac{{n\pi }}{3}\). Mệnh đề nào dưới đây đúng?

Xem lời giải >>
Bài 19 :

Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + 2n + 1\end{array} \right.\left( {n \ge 1} \right)\). Giá trị của \(n\) để \( - {u_n} + 2023n + 2024 = 0\) là:

Xem lời giải >>