Phương trình \(x - 8 = x - 5\). Khẳng định nào sau đây đúng?
Phương trình đã cho có vô số nghiệm.
Phương trình đã cho vô nghiệm.
Phương trình đã cho có một nghiệm.
Phương trình đã cho có hai nghiệm.
Sử dụng cách giải phương trình đưa về bậc nhất một ẩn.
\(x - 8 = x - 5\)
\(x - x = 8 - 5\)
\(0 = 3\) (vô lí)
Vậy phương trình đã cho vô nghiệm
Đáp án : B
Các bài tập cùng chuyên đề
Phương trình với ẩn x có dạng:
Phương trình nào dưới đây là phương trình một ẩn?
\({x_0}\) được gọi là nghiệm của phương trình \(A\left( x \right) = B\left( x \right)\) nếu:
Phương trình dạng \(ax + b = 0\), với a, b là hai số đã cho được gọi là phương trình bậc nhất một ẩn x khi:
Cho phương trình \(2x + 1 = 0\), chọn khẳng định đúng
Nghiệm của phương trình \(3x - 6 = 0\) là:
Nghiệm của phương trình \(\frac{3}{4} + \frac{2}{5}x = 0\) có dạng \(x = - \frac{a}{b},\) trong đó \(b > 0\) và \(\frac{a}{b}\) là phân số tối giản. Khẳng định nào sau đây đúng?
Ở một số quốc gia, người ta dùng cả hai đơn vị đo nhiệt độ là Fahrenheit (oF) và độ Celcius (oC), liên hệ với nhau bởi công thức \(C = \frac{5}{9}\left( {F - 32} \right).\) Khi ở 20 oC thì ứng với độ Fahrenheit là:
Biết rằng \(4x - 8 = 0\). Giá trị của biểu thức \(5{x^2} - 4\) là:
Phương trình \({x^2} + 4 = 0\) có bao nhiêu nghiệm?
Tìm x, biết rằng nếu lấy x trừ đi \(\frac{1}{4},\) rồi nhân kết quả với \(\frac{1}{2}\) thì được \(\frac{1}{8}\)
Gọi \({x_0}\) là nghiệm của phương trình \(3\left( {x - 5} \right) + 9x\left( {x - 3} \right) = 9{x^2}.\)
Hãy chọn đáp án đúng.
Cho \(A = \frac{{2\left( {x + 1} \right)}}{3} - \frac{1}{2},B = \frac{{1 + 3x}}{4}\). Tìm x để \(A = B\)
Cho hai phương trình \(8\left( {x - 2} \right) = 14 + 6\left( {x - 1} \right) + 2\left( {x + 5} \right)\,\,\left( 1 \right)\) và \({\left( {x - 2} \right)^2} = {x^2} - 2x - 2\left( {x - 2} \right)\;\;\left( 2 \right)\)
Hãy chọn đáp án đúng.
Cho phương trình: \(\frac{{x - 11}}{{2011}} + \frac{{x - 10}}{{2012}} = \frac{{x - 74}}{{1948}} + \frac{{x - 72}}{{1950}}\).
Khẳng định nào sau đây đúng?
Tìm điều kiện của m để phương trình \(3mx + m - 4x = 3{m^2} + 1\) có nghiệm duy nhất
Hình tam giác và hình chữ nhật ở hình dưới có cùng chu vi. Khi đó, giá trị của x là:
Cho hai phương trình \(\frac{{7x}}{8} - 5\left( {x - 9} \right) = \frac{1}{6}\left( {20x + 1,5} \right)\left( 1 \right)\) và \(2\left( {a - 1} \right)x - a\left( {x - 1} \right) = 2a + 3\;\left( 2 \right)\)
Để phương trình (2) có một nghiệm bằng một phần ba nghiệm của phương trình (1) thì giá trị của a là:
Phương trình \(\frac{{x + 1}}{3} + \frac{{3\left( {2x + 1} \right)}}{4} = \frac{{2x + 3\left( {x + 1} \right)}}{6} + \frac{{7 + 12x}}{{12}}\) có bao nhiêu nghiệm?
Cho hình vẽ dưới đây. Biết rằng diện tích của cả hình đó bằng \(168{m^2}.\) Khi đó, giá trị của x (mét) là: