Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)
Ta có:
\(\begin{array}{l}Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\\Q = 8{{{x}}^{n + 2}} + 8{{{x}}^n} = 8{{{x}}^n}\left( {{x^2} + 1} \right)\end{array}\)
Vì \({x^2} + 1 > 0\) với mọi x nên \(Q = 0 \) khi \(8{{{x}}^n}\left( {{x^2} + 1} \right) = 0 \) hay \(x = 0\)
Vậy x = 0 thì Q = 0
Đáp án : A
Các bài tập cùng chuyên đề
Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.
Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:
Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):
Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:
Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:
Thu gọn đa thức \(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:
Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)
Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:
\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:
Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008
Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)
Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:
Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:
: Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại
x = y = -2.
Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.
Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)