Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).
Sử dụng định nghĩa đơn thức đồng dạng: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác \(0\)và có cùng phần biến. Các số khác \(0\) được coi là những đơn thức đồng dạng.
Có ba nhóm đơn thức đồng dạng trong các đơn thức đã cho gồm :
Nhóm thứ nhất : \( - \frac{2}{3}{x^3}y\), \(2{x^3}y\).
Nhóm thứ hai: \(5{x^2}y\), \(\frac{1}{2}{x^2}y\).
Nhóm thứ ba: \( - x{y^2}\), \(6x{y^2}\).
\( \frac {3}{4} \) không có đơn thức nào đồng dạng.
Đáp án : B
Các bài tập cùng chuyên đề
Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?
Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:
Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.
Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:
Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là
Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là
Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:
Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:
Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:
Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).
Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).
Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng: