Cho tam giác $ABC$ vuông tại $A$ có $AB = AC.$ Qua $A$ kẻ đường thẳng $xy$ sao cho $B,C$ nằm cùng phía với $xy.$ Kẻ $BD$ và $CE$ vuông góc với $xy.$ Chọn câu đúng.
$DE = BD + CE$
$DE = BD - CE$
$CE = BD + DE$
$CE = BD - DE$
+ Dựa vào hệ quả của trường hợp bằng nhau thứ ba của tam giác để chứng minh các cặp tam giác bằng nhau
+ Từ các cặp cạnh tương ứng bằng nhau ta lập luận để suy ra mối quan hệ đúng.
Ta có: \({\widehat A_1} + {\widehat A_2} = {90^0}\,\,\,\left( {do\,\,\,\widehat {BAC} = {{90}^0}} \right)\)
Mà ${\widehat A_1} + {\widehat B_2} = {90^0}$ vì tam giác $ABD$ vuông tại $D.$
\( \Rightarrow {\widehat B_2} = {\widehat A_2}\) (cùng phụ với \({\widehat A_1}\)).
Lại có \({\widehat A_2} + {\widehat C_1} = {90^0}\) vì tam giác $ACE$ vuông tại $E$
\( \Rightarrow {\widehat A_1} = {\widehat C_1}\) (cùng phụ với \({\widehat A_2}\)).
Xét hai tam giác vuông $BDA$ và $AEC$ có:
\(\widehat D = \widehat E = {90^0}\); \(AB = AC\) (gt) và \(\widehat {{A_1}} = \widehat {{C_1}}\) (cmt)
\( \Rightarrow \Delta BA{\rm{D}} = \Delta ACE\) (cạnh huyền – góc nhọn)
Suy ra $BD = AE$ (hai cạnh tương ứng), $CE = AD$ (hai cạnh tương ứng).
Do đó $DE = AD + AE = CE + BD.$
Đáp án : A
Các bài tập cùng chuyên đề
Cho tam giác \(ABC\) và tam giác \(NPM\) có \(BC = PM;\,\widehat B = \widehat P\). Cần thêm một điều kiện gì để tam giác $MPN$ và tam giác $CBA$ bằng nhau theo trường hợp góc – cạnh – góc ?
Cho tam giác $ABC$ và tam giác $MNP$ có \(\widehat A = \widehat {M,}\widehat B = \widehat N\) . Cần thêm điểu kiện gì để tam giác $ABC$ và tam giác $MNP$ bằng nhau theo trường hợp góc – cạnh – góc:
Cho tam giác $ABC$ và tam giác $MNP$ có $\widehat B = \widehat N = {90^ \circ }$, $AC = MP,$ \(\widehat C = \widehat M\) . Phát biểu nào trong các phát biểu sau đây là đúng:
Cho góc nhọn $xOy,Oz$ là tia phân giác của góc đó. Qua điểm $A$ thuộc tia $Ox$ kẻ đường thẳng song song với $Oy$ cắt $Oz$ ở $M.$ Qua $M$ kẻ đường thẳng song song với $Ox$ cắt $Oy$ ở $B.$ Chọn câu đúng.
Cho đoạn thẳng \(AB,O\) là trung điểm của \(AB.\) Trên cùng một nửa mặt phẳng bờ \(AB\) vẽ các tia \(Ax;By\) vuông góc với \(AB.\) Gọi \(C\) là một điểm thuộc tia \(Ax.\) Đường vuông góc với \(OC\) tại ${\rm{O}}$ cắt tia \(By\) ở \(D.\) Khi đó
Cho tam giác \(ABC\) có \(AB = AC.\) Trên các cạnh \(AB\) và \(AC\) lấy các điểm \(D,E\) sao cho \(AD = AE.\) Gọi \(K\) là giao điểm của \(BE\) và \(CD\). Chọn câu sai.
Cho tam giác $DEF$ và tam giác $HKG$ có \(\widehat D = \widehat H\), \(\widehat E = \widehat K\), $DE = HK.$ Biết \(\widehat F = {80^0}\). Số đo góc $G$ là:
Cho tam giác $ABC$ và tam giác $DEF$ có $AB = DE,$ \(\widehat B = \widehat E\) , \(\widehat A = \widehat D\). Biết $AC = 6cm.$ Độ dài $DF$ là:
Cho tam giác $ABC,D$ là trung điểm của $AB.$ Đường thẳng qua $D$ và song song với $BC$ cắt $AC$ ở $E,$ đường thẳng qua $E$ và song song với $AB$ cắt $BC$ ở $F.$ Khi đó
Cho tam giác \(ABC\) có \(\widehat A = {60^0}.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D,\) tia phân giác của góc \(C\) cắt \(AB\) ở \(E.\) Các tia phân giác đó cắt nhau ở \(I.\) Tính độ dài \(ID,\) biết \(IE = 2cm.\)
Cho hai đoạn thẳng \(AB,CD\) song song với nhau. Hai đoạn thẳng này chắn giữa hai đường thẳng song song \(AC,BD\). Chọn câu đúng: