Cho tam giác $ABC$ (không có hai góc nào bằng nhau, không có hai cạnh nào bằng nhau) bằng một tam giác có ba đỉnh là $O,H,K.$ Viết kí hiệu về sự bằng nhau của hai tam giác, biết rằng: \(\widehat A = \widehat O,\widehat B = \widehat K.\)
\(\Delta ABC = \Delta KOH\)
\(\Delta ABC = \Delta HOK\)
\(\Delta ABC = \Delta OHK\)
\(\Delta ABC = \Delta OKH\)
Áp dụng định nghĩa hai tam giác bằng nhau. Chú ý đến thứ tự các đỉnh tương ứng của hai tam giác.
Vì \(\widehat A = \widehat O,\widehat B = \widehat K\) nên hai góc còn lại bằng nhau là \(\widehat C = \widehat H.\)
Suy ra \(\Delta ABC = \Delta OKH.\)
Đáp án : D
Các bài tập cùng chuyên đề
Cho \(\Delta ABC = \Delta MNP.\) Chọn câu sai.
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {33^0}\). Khi đó
Cho hai tam giác \(ABC\) và \(DEF\) có \(AB = EF;\,BC = FD;AC = ED;\) \(\widehat A = \widehat E;\widehat B = \widehat F;\widehat D = \widehat C\). Khi đó
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A = {32^0},\widehat F = {78^0}\). Tính \(\widehat B;\widehat E.\)
Cho \(\Delta ABC = \Delta MNP.\) Biết \(AB = 5cm,\) \(MP = 7cm\) và chu vi của tam giác $ABC$ bằng $22cm.$ Tính các cạnh còn lại của mỗi tam giác.
Cho \(\Delta ABC = \Delta DEF.\) Biết rằng \(AB = 6cm,\) \(AC = 8cm\) và \(EF = 10cm.\) Chu vi tam giác \(DEF\) là
Cho \(\Delta ABC = \Delta DEF.\) Biết \(\widehat A + \widehat B = {130^0},\widehat E = {55^0}.\) Tính các góc \(\widehat A,\widehat C,\widehat D,\widehat F.\)
Cho \(\Delta DEF = \Delta MNP.\) Biết \(EF + FD = 10cm,\) \(NP - MP = 2cm,\) \(DE = 3cm.\) Tính độ dài cạnh \(FD.\)
Cho \(\Delta ABC = \Delta MNP\) trong đó \(\widehat A = 30^\circ ;\widehat P = 60^\circ .\) So sánh các góc \(N;\,M;\,P.\)