Đề bài

Giá trị nhỏ nhất của biểu thức ${\left( {x + \dfrac{1}{3}} \right)^2} + \dfrac{1}{{100}}$ đạt được là: 

  • A.

    $ - \dfrac{1}{2}$

  • B.

    $\dfrac{{ - 1}}{{100}}$

  • C.

    $\dfrac{1}{{100}}$

  • D.

    $\dfrac{{81}}{{100}}$

Phương pháp giải

Dùng phương pháp đánh giá biểu thức, sử dụng \({x^2} \ge 0,\forall x\).

Lời giải của GV Loigiaihay.com

Ta có: ${\left( {x + \dfrac{1}{3}} \right)^2} \ge 0 $ với mọi $x$

$\Rightarrow {\left( {x + \dfrac{1}{3}} \right)^2} + \dfrac{1}{{100}} \ge 0+ \dfrac{1}{{100}}$

$\Rightarrow {\left( {x + \dfrac{1}{3}} \right)^2} + \dfrac{1}{{100}} \ge \dfrac{1}{{100}}$

Do đó GTNN biểu thức đạt được là \(\dfrac{1}{{100}}\) khi và chỉ khi

\((x + \dfrac{1}{3})^2 = 0\) \(\Rightarrow x + \dfrac{1}{3} = 0\) hay \(x =  - \dfrac{1}{3}\).

Vậy giá trị nhỏ nhất cần tìm là $\dfrac{1}{100}.$

Đáp án : C

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề