Tìm \(x\) biết \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)
\(\dfrac{1}{3}\)
\(\dfrac{{ - 3}}{{20}}\)
\(\dfrac{1}{2}\)
\(\dfrac{{ - 2}}{{30}}\)
Biến đổi để đưa về dạng tìm \(x\) đã học.
Tìm số trừ bằng cách lấy số bị trừ trừ đi hiệu
Tìm số hạng chưa biết bằng cách lấy tổng trừ đi số hạng đã biết
Ta có \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)
\(\dfrac{2}{5} + x = \dfrac{{11}}{{12}} - \dfrac{2}{3}\)
\(\dfrac{2}{5} + x = \dfrac{{11}}{{12}} - \dfrac{8}{{12}}\)
\(\dfrac{2}{5} + x = \dfrac{3}{{12}}\)
\(x = \dfrac{1}{4} - \dfrac{2}{5}\)
\(x = \dfrac{5}{{20}} - \dfrac{8}{{20}}\)
\(x = \dfrac{{ - 3}}{{20}}\)
Vậy \(x = \dfrac{{ - 3}}{{20}}\).
Đáp án : B
Các bài tập cùng chuyên đề
Kết quả của phép tính $\dfrac{2}{3} + \dfrac{4}{5}$ là:
Chọn kết luận đúng nhất về kết quả của phép tính \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}}\)
\(\dfrac{{23}}{{12}}\) là kết quả của phép tính:
Số \(\dfrac{{ - 3}}{{14}}\) viết thành hiệu của hai số hữu tỉ dương nào dưới đây?
Tính \(\dfrac{2}{7} + \left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5},\) ta được kết quả là:
Cho $x + \dfrac{1}{2} = \dfrac{3}{4}$. Giá trị của x bằng:
Giá trị biểu thức \(\dfrac{2}{5} + \left( { - \dfrac{4}{3}} \right) + \left( { - \dfrac{1}{2}} \right)\) là :
Kết luận nào đúng khi nói về giá trị của biểu thức \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)
Số nào dưới đây là giá trị của biểu thức $B = \dfrac{2}{{11}} - \dfrac{5}{{13}} + \dfrac{9}{{11}} - \dfrac{8}{{13}}$
Cho các số hữu tỉ \(x = \dfrac{a}{b},y = \dfrac{c}{d}\,\,(a,b,c,d \in Z,b \ne 0,d \ne 0).\) Tổng $x + y$ bằng:
Tính nhanh \(\left( { - 2 - \dfrac{1}{3} - \dfrac{1}{5}} \right) - \left( {\dfrac{2}{3} - \dfrac{6}{5}} \right),\)ta được kết quả là:
Tính giá trị biểu thức \(M = \left( {\dfrac{2}{3} - \dfrac{1}{4} + 2} \right) - \left( {2 - \dfrac{5}{2} + \dfrac{1}{4}} \right) - \left( {\dfrac{5}{2} - \dfrac{1}{3}} \right)\).
Giá trị nào dưới đây của \(x\) thỏa mãn \(\dfrac{3}{7} - x = \dfrac{1}{4} - \left( { - \dfrac{3}{5}} \right)\)
Gọi \({x_0}\) là số thỏa mãn \(x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = \dfrac{1}{3} + \dfrac{1}{6} - \dfrac{1}{2}.\) Khi đó
Giá trị của biểu thức $\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{2018.2019}}$ là
Kết quả của phép tính: \(\dfrac{{ - 2}}{3} + \dfrac{4}{3}\) là: