Chọn kết luận đúng nhất về kết quả của phép tính \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}}\)
Là số nguyên âm
Là số nguyên dương
Là số hữu tỉ âm
Là số hữu tỉ dương
Đưa hai phân số về cùng mẫu rồi thực hiện phép cộng hai phân số cùng mẫu.
Với $x = \dfrac{a}{m};\,y = \dfrac{b}{m}\,\left( {a,b,m \in \mathbb{Z},\,m > 0} \right)$ ta có:
\(x + y = \dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)
Ta có \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}} = \dfrac{{ - 4}}{{26}} + \dfrac{{ - 11}}{{26}} = \dfrac{{ - 15}}{{26}}\)
Do đó kết quả là số hữu tỉ âm.
Đáp án : C
Các bài tập cùng chuyên đề
Kết quả của phép tính $\dfrac{2}{3} + \dfrac{4}{5}$ là:
\(\dfrac{{23}}{{12}}\) là kết quả của phép tính:
Số \(\dfrac{{ - 3}}{{14}}\) viết thành hiệu của hai số hữu tỉ dương nào dưới đây?
Tính \(\dfrac{2}{7} + \left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5},\) ta được kết quả là:
Cho $x + \dfrac{1}{2} = \dfrac{3}{4}$. Giá trị của x bằng:
Giá trị biểu thức \(\dfrac{2}{5} + \left( { - \dfrac{4}{3}} \right) + \left( { - \dfrac{1}{2}} \right)\) là :
Kết luận nào đúng khi nói về giá trị của biểu thức \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)
Số nào dưới đây là giá trị của biểu thức $B = \dfrac{2}{{11}} - \dfrac{5}{{13}} + \dfrac{9}{{11}} - \dfrac{8}{{13}}$
Cho các số hữu tỉ \(x = \dfrac{a}{b},y = \dfrac{c}{d}\,\,(a,b,c,d \in Z,b \ne 0,d \ne 0).\) Tổng $x + y$ bằng:
Tính nhanh \(\left( { - 2 - \dfrac{1}{3} - \dfrac{1}{5}} \right) - \left( {\dfrac{2}{3} - \dfrac{6}{5}} \right),\)ta được kết quả là:
Tính giá trị biểu thức \(M = \left( {\dfrac{2}{3} - \dfrac{1}{4} + 2} \right) - \left( {2 - \dfrac{5}{2} + \dfrac{1}{4}} \right) - \left( {\dfrac{5}{2} - \dfrac{1}{3}} \right)\).
Giá trị nào dưới đây của \(x\) thỏa mãn \(\dfrac{3}{7} - x = \dfrac{1}{4} - \left( { - \dfrac{3}{5}} \right)\)
Tìm \(x\) biết \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)
Gọi \({x_0}\) là số thỏa mãn \(x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = \dfrac{1}{3} + \dfrac{1}{6} - \dfrac{1}{2}.\) Khi đó
Giá trị của biểu thức $\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{2018.2019}}$ là
Kết quả của phép tính: \(\dfrac{{ - 2}}{3} + \dfrac{4}{3}\) là: