Đề bài

Cho \(\Delta ABC\), các tia phân giác của góc $B$  và $A$ cắt nhau tại điểm $O.$  Qua $O$  kẻ đường thẳng song song với $BC$  cắt $AB$  tại $M,$ cắt $AC$  ở $N.$  Cho $BM = 2cm,CN = 3cm.$ Tính $MN?$

  • A.

    $9cm$

  • B.

    $6cm$

  • C.

    $5cm$

  • D.

    $10cm$

Phương pháp giải

Áp dụng tính chất 3 đường phân giác của tam giác, tia phân giác của 1 góc, hai đường thẳng song song và tính chất tam giác cân.

Lời giải của GV Loigiaihay.com

Vì O là giao điểm của hai tia phân giác của các góc \(\widehat {ABC}\) và \(\widehat {CAB}\)(gt)

Suy ra, CO là phân giác của \(\widehat {ACB}\)(tính chất 3 đường phân giác của tam giác)

\( \Rightarrow \widehat {ACO} = \widehat {BCO}\left( 1 \right)\) (tính chất tia phân giác của một góc)

BO là phân giác của \(\widehat {ABC}\left( {gt} \right) \Rightarrow \widehat {OBA} = \widehat {OBC}\left( 2 \right)\) (tính chất tia phân giác của một góc)

Vì MN // BC (gt) \(\left\{ \begin{array}{l}\widehat {MOB} = \widehat {OBC}\left( 3 \right)\\\widehat {NOC} = \widehat {OCB}\left( 4 \right)\end{array} \right.\) (so le trong)

Từ (1) và (4) \( \Rightarrow \widehat {NOC} = \widehat {NCO} \Rightarrow \Delta NOC\) cân tại N (dấu hiệu nhận biết tam giác cân)

\( \Rightarrow NO = NC = 5cm\) (tính chất tam giác cân)

Từ (2) và (3) \( \Rightarrow \widehat {MOB} = \widehat {MBO} \Rightarrow \Delta MOB\) cân tại M (dấu hiệu nhận biết tam giác cân)

\( \Rightarrow MB = MO = 4cm\) (tính chất tam giác cân)

\( \Rightarrow MN = MO + ON = 4 + 5 = 9cm.\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Chọn câu sai.

Xem lời giải >>
Bài 2 :

Tam giác \(ABC\) có trung tuyến \(AM = 12\,cm\) và trọng tâm \(G\). Độ dài đoạn \(AG\) là

Xem lời giải >>
Bài 3 :

Cho \(G\) là trọng tâm của tam giác đều. Chọn câu đúng.

Xem lời giải >>
Bài 4 :

Cho tam giác \(ABC\) có hai đường trung tuyến \(BD;CE\) sao cho \(BD = CE\). Khi đó tam giác \(ABC\)

Xem lời giải >>
Bài 5 :

Cho tam giác \(ABC\), các đường trung tuyến \(BD\) và \(CE\). Chọn câu đúng.

Xem lời giải >>
Bài 6 :

Cho tam giác $MNP,$  hai đường trung tuyến $ME$  và $NF$  cắt nhau tại $O.$  Tính diện tích tam giác $MNP,$  biết diện tích tam giác $MNO$  là \(12c{m^2}\).

Xem lời giải >>
Bài 7 :

Cho tam giác \(ABC\), đường trung tuyến \(BD\). Trên tia đối của tia $DB$ lấy điểm \(E\) sao cho \(DE = DB.\) Gọi \(M,N\) theo thứ tự là trung điểm của \(BC;CE.\) Gọi \(I;K\) theo thứ tự là giao điểm của \(AM,AN\) với \(BE.\)  Chọn câu đúng.

Xem lời giải >>
Bài 8 :

Cho tam giác \(ABC\) có hai đường phân giác \(CD\) và \(BE\) cắt nhau tại \(I.\) Khi đó

Xem lời giải >>
Bài 9 :

Cho \(\Delta ABC\) cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác trong tam giác. Khi đó ta có:

Xem lời giải >>
Bài 10 :

Cho tam giác \(ABC\) có: \(\widehat B = 2\widehat C,\) các đường phân giác của góc \(B\) và \(C\) cắt nhau tại \(I.\) Chọn câu đúng.

Xem lời giải >>