Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn thẳng có độ dài cho sau đây không thể là ba cạnh của một tam giác.
$3cm,5cm,7cm$
$4cm,5cm,6cm$
$2cm,5cm,7cm$
$3cm,6cm,5cm.$
Ta kiểm tra tổng độ dài 2 đoạn thẳng ngắn hơn có lớn hơn độ dài đoạn thẳng dài nhất hay không. Nếu thỏa mãn thì 3 đoạn thẳng đã cho ghép được thành 1 tam giác.
+ Xét bộ ba: $3cm,5cm,7cm.$ Ta có: \(3 + 5 = 8 > 7\) (thỏa mãn bất đẳng thức tam giác) nên bộ ba $3cm,5cm,7cm$ lập thành một tam giác. Loại đáp án A.
+ Xét bộ ba: $4cm,5cm,6cm$. Ta có: \(4 + 5 = 9 > 6\) (thỏa mãn bất đẳng thức tam giác) nên bộ ba $4cm,5cm,6cm$ lập thành một tam giác. Loại đáp án B.
+ Xét bộ ba: $2cm,5cm,7cm.$ Ta có: \(2 + 5 = 7\) (không thỏa mãn bất đẳng thức tam giác) nên bộ ba $2cm,5cm,7cm$ không lập thành một tam giác. Chọn đáp án C.
+ Xét bộ ba: $3cm,5cm,6cm.$ Ta có: \(3 + 5 = 8 > 6\) (thỏa mãn bất đẳng thức tam giác) nên bộ ba $3cm,5cm,6cm$ lập thành một tam giác. Loại đáp án D.
Đáp án : C
Các bài tập cùng chuyên đề
Cho \(\Delta ABC\), em hãy chọn đáp án sai trong các đáp án sau:
Cho \(\Delta ABC\) có cạnh $AB = 2cm$ và cạnh \(BC = 6cm\). Tính độ dài cạnh $AC$ biết độ dài cạnh $AC$ là một số tự nhiên chẵn.
Cho tam giác \(ABC\) biết \(AB = 1\,cm;\,BC = 6\,cm\) và cạnh \(AC\) là một số nguyên. Chu vi tam giác \(ABC\) là
Cho \(\Delta ABC\) cân tại \(A\) có một cạnh bằng $5cm.$ Tính cạnh $BC$ của tam giác đó biết chu vi của tam giác là $17cm.$
Cho \(\Delta ABC\) có $M$ là trung điểm $BC.$ So sánh $AB + AC$ và $2AM.$
Cho \(\Delta ABC\) có điểm $O$ là một điểm bất kì nằm trong tam giác. So sánh \(OA + OC\) và \(AB + BC\).
Cho hình vẽ dưới đây. Chọn câu đúng.
Cho \(\Delta ABC\) có \(D\) là trung điểm của \(BC\). Trong các khẳng định sau khẳng định nào đúng?