Cho tam giác \(ABC\) và tam giác \(MNP\) có \(\widehat A = \widehat {M,}\widehat B = \widehat N\) . Cần thêm điều kiện gì để tam giác \(ABC\) và tam giác \(MNP\) bằng nhau theo trường hợp góc – cạnh – góc:
\(AC = MP\)
\(AB = MN\)
\(BC = NP\)
\(AC = MN\)
Áp dụng trường hợp bằng nhau thứ ba của tam giác.
Ta thấy hai tam giác \(ABC\) và tam giác \(MNP\) có hai yếu tố về góc \(\widehat A = \widehat {M,}\widehat B = \widehat N\).
Để tam giác \(ABC\) và tam giác \(MNP\) bằng nhau theo trường hợp góc – cạnh – góc thì cần thêm điều kiện về cạnh kề hai góc đã cho đó là \(AB = MN.\)
Đáp án : B
Các bài tập cùng chuyên đề
Cho tam giác $ABC$ và tam giác $MHK$ có: $AB = MH$ , \(\widehat A = \widehat M\). Cần thêm một điều kiện gì để hai tam giác $ABC$ và $MHK$ bằng nhau theo trường hợp cạnh – góc – cạnh:
Cho tam giác $BAC$ và tam giác $KEF$ có $BA = EK,$ \(\widehat A = \widehat K\), $CA = KF.$ Phát biểu nào trong trong các phát biểu sau đây là đúng:
Cho tam giác $DEF$ và tam giác $HKG$ có $DE = HK$ , \(\widehat E = \widehat K\), $EF = KG.$ Biết \(\widehat D = {70^0}\). Số đo góc $H$ là:
Cho tam giác $ABC$ có \(\widehat A = {90^0}\), tia phân giác $BD$ của góc $B$ (\(D \in AC\)). Trên cạnh $BC$ lấy điểm $E$ sao cho $BE = BA.$ Hai góc nào sau đây bằng nhau?
Cho đoạn thẳng \(AB\), trên đường trung trực \(d\) của đoạn \(AB\) lấy điểm \(M.\) So sánh \(AM\) và \(BM.\)
Cho tam giác $ABC$ có $M,N$ lần lượt là trung điểm của $AB,AC.$ Trên tia đối của tia $MC$ lấy $D$ sao cho $MD = MC$ . Trên tia đối của tia $NB$ lấy điểm $E$ sao cho $NE = NB.$
(I) \(\Delta AMD = \Delta BMC\)
(II) \(\Delta ANE = \Delta CNB\)
(III) $A,D,E$ thẳng hàng
(IV) $A$ là trung điểm của đoạn thẳng $DE$
Số khẳng định đúng trong các khẳng định trên là
Cho hai đoạn thẳng \(AB\) và \(CD\) cắt nhau tại \(O\) là trung điểm của mỗi đoạn thẳng đó. Lấy \(E;\,F\) lần lượt là điểm thuộc đoạn \(AD\) và \(BC\) sao cho \(AE = BF.\) Cho \(OE = 2cm\), tính \(EF.\)
Cho tam giác \(ABC\) và tam giác \(NPM\) có \(BC = PM;\,\widehat B = \widehat P\). Cần thêm một điều kiện gì để tam giác $MPN$ và tam giác $CBA$ bằng nhau theo trường hợp góc – cạnh – góc ?
Cho tam giác $ABC$ và tam giác $MNP$ có $\widehat B = \widehat N = {90^ \circ }$, $AC = MP,$ \(\widehat C = \widehat M\) . Phát biểu nào trong các phát biểu sau đây là đúng:
Cho tam giác $DEF$ và tam giác $HKG$ có \(\widehat D = \widehat H\), \(\widehat E = \widehat K\), $DE = HK.$ Biết \(\widehat F = {80^0}\). Số đo góc $G$ là:
Cho tam giác $ABC$ và tam giác $DEF$ có $AB = DE,$ \(\widehat B = \widehat E\) , \(\widehat A = \widehat D\). Biết $AC = 6cm.$ Độ dài $DF$ là:
Cho tam giác $ABC$ vuông tại $A$ có $AB = AC.$ Qua $A$ kẻ đường thẳng $xy$ sao cho $B,C$ nằm cùng phía với $xy.$ Kẻ $BD$ và $CE$ vuông góc với $xy.$ Chọn câu đúng.
Cho tam giác $ABC,D$ là trung điểm của $AB.$ Đường thẳng qua $D$ và song song với $BC$ cắt $AC$ ở $E,$ đường thẳng qua $E$ và song song với $AB$ cắt $BC$ ở $F.$ Khi đó
Cho tam giác \(ABC\) có \(\widehat A = {60^0}.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D,\) tia phân giác của góc \(C\) cắt \(AB\) ở \(E.\) Các tia phân giác đó cắt nhau ở \(I.\) Tính độ dài \(ID,\) biết \(IE = 2cm.\)
Cho hai đoạn thẳng \(AB,CD\) song song với nhau. Hai đoạn thẳng này chắn giữa hai đường thẳng song song \(AC,BD\). Chọn câu đúng:
Cho tam giác \(BAC\) và tam giác \(KEF\) có \(BA = EK,\) \(\widehat A = \widehat K\), \(CA = KF.\) Phát biểu nào trong trong các phát biểu sau đây là đúng:
Cho góc nhọn \(xOy,Oz\) là tia phân giác của góc đó. Qua điểm \(A\) thuộc tia \(Ox\) kẻ đường thẳng song song với \(Oy\) cắt \(Oz\) ở \(M.\) Qua \(M\)kẻ đường thẳng song song với \(Ox\) cắt \(Oy\) ở \(B.\) Chọn câu đúng.
Cho hai đoạn thẳng \(BD\) và \(EC\) vuông góc với nhau tại \(A\) sao cho \(AB = AE,AD = AC,AB < AC.\) Phát biểu nào trong các phát biểu sau đây là sai:
Cho góc nhọn \(xOy.\) Trên tia \(Ox\) lấy hai điểm \(A,C,\) trên tia \(Oy\) lấy hai điểm \(B,D\) sao cho \(OA = OB,OC = OD\) (\(A\) nằm giữa \(O\) và \(C,\)\(B\) nằm giữa \(O\) và \(D\) ). So sánh hai góc \(\widehat {CAD}\) và \(\widehat {CBD}.\)
Cho tam giác \(ABC\) có \(AB = AC = BC,\) phân giác \(BD\) và \(CE\) cắt nhau tại \(O.\) Tính \(\widehat {BOC}.\)