ƯU ĐÃI 50% HỌC PHÍ + CƠ HỘI NHẬN MÃ "LOCDAUNAM" GIẢM THÊM 600K HỌC PHÍ
Tìm giá trị lớn nhất của biểu thức:
M=3(2x+1)4+2
32
−32
3
23
Đánh giá giá trị của tử và mẫu
Chú ý: a4 ≥ 0, với mọi a
Vì (2x+1)4 ≥ 0, với mọi x nên (2x+1)4 +2 ≥ 2, với mọi x
⇒3(2x+1)4+2≤32, với mọi x. Dấu “=” xảy ra khi 2x + 1 = 0 hay x = −12
Vậy Max M = 32.
Đáp án : A
Các bài tập cùng chuyên đề
Tính:
59:(111−522)+74.(114−27)
Tìm x thỏa mãn 2x + 3 = -x + 6
Tìm x biết:
−2x+(−25)2=0,12
Tính 253012515
Tính: T = [ (-43,57) . 40 – 40. 26,43] : [ -72 . 63,6 – 4,9 . 64]
Tìm x thỏa mãn: (−2x+52).(x2+4)=0
Với n nguyên dương, cho Q = 3n+3 + 3n+1 + 2n+2 + 2n+1
Tìm khẳng định đúng nhất:
Tìm n biết:
87+87+87+8737+37+37:27+2767+67+67+67+67+67=2n
Tính: B=1,2.(313−2,2)−215.(−2+56)−20220